【題目】如圖,在四棱錐中, , ,點為棱的中點.

(1)證明: 平面;

(2)若,求三棱錐的體積.

【答案】1見解析2

【解析】試題分析:(1)取的中點,連接,根據(jù)三角形中位線定理可得,從而可得四邊形為平行四邊形, ,利用線面平行的判定定理可得平面;(2)由,由勾股定理可得,從而得平面, 到平面的距離為,利用三角形面積公式求出底面積,根據(jù)等積變換及棱錐的體積公式可得 .

試題解析:1)取的中點,連接.

因為點為棱的中點,

所以,

因為 ,

所以,

所以四邊形為平行四邊形,

所以,

因為平面, 平面

所以平面.

2)因為,

所以.

因為,所以,

所以

因為, 平面, 平面,

所以平面.

因為點為棱的中點,且,

所以點到平面的距離為2.

.

三棱錐的體積 .

【方法點晴】本題主要考查線面平行的判定定理、利用等積變換求三棱錐體積,屬于中檔題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列滿足,若存在兩項,使得,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若圓的任意一條切線與橢圓E相交于P,Q兩點,試問: 是否為定值? 若是,求這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點, 上的任意一點.

(1)求的取值范圍;

(2)上異于的兩點,若直線與直線的斜率之積為,證明: 兩點的橫坐標(biāo)之和為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: .

(1)設(shè),求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若求函數(shù)的圖像在點處的切線方程;

(2)當(dāng)時,函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的左右焦點分別為,左頂點為,點在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過原點且與軸不重合的直線交橢圓,兩點,直線分別與軸交于點,.求證:以為直徑的圓恒過交點,,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在(單位:克),脂肪的攝入量控制在(單位:克),某學(xué)校食堂提供的伙食以食物和食物為主,1千克食物含蛋白質(zhì)60克,含脂肪9克,售價20元;1千克食物含蛋白質(zhì)30克,含脂肪27克,售價15元.

(1)如果某學(xué)生只吃食物,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;

(2)為了花費最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時食用食物和食物各多少千克?并求出最低需要花費的錢數(shù).

查看答案和解析>>

同步練習(xí)冊答案