已知函數(shù),對函數(shù),定義關(guān)于的“對稱函數(shù)”為函數(shù),滿足:對任意,兩個點(diǎn)關(guān)于點(diǎn)對稱,若是關(guān)于的“對稱函數(shù)”,且恒成立,則實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對任意,都有,,其中為數(shù)列的前n項(xiàng)和.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)(為非零整數(shù),),試確定的值,使得對任意,都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),則“函數(shù)在R上是減函數(shù) ”,是“函數(shù)在R上是增函數(shù)”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充分必要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù) 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;如圖,四邊形中,,,為的內(nèi)角的對邊,且滿足.
(Ⅰ)證明:;
(Ⅱ)若,設(shè),,,
求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2,且(2+b)·(sin A-sin B)=(c-b)sin C,則△ABC面積的最大值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com