18.若l∩α=A,b?α,則1與b的位置關(guān)系為相交或異面.

分析 由已知條件,A∈b,l與b相交;A∉b,l與b異面,即可得出結(jié)論.

解答 解:∵l∩α=A,b?α,
∴A∈b,l與b相交;A∉b,l與b異面,
∴l(xiāng)與b相交或異面.
故答案為:相交或異面.

點評 本題考查空間中直線與直線、直線與平面的位置關(guān)系,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)證明:數(shù)列{$\frac{1}{{a}_{n}-1}$}為等差數(shù)列,并求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)=$\frac{1}{1+{x}^{2}}$+x3${∫}_{0}^{1}$f(x)dx,則${∫}_{0}^{1}$f(x)dx=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.Rt△ABC中.|AB|=2a(a>0),求直角頂點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在正六棱柱的各個面所在的平面中,有4對互相平行,與一個側(cè)面所在平面相交的有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知下列命題:
①若a>0,則方程ax2+2x=0有解;
②“等腰三角形都相似”的逆命題;
③“若x-$\frac{3}{2}$是有理數(shù),則x是無理數(shù)”的逆否命題;
④“若a>1,b>1,則a-b>2”的否命題.
其中真命題的序號是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線,求k的取值范圍,并寫出焦點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等邊三角形ABC的邊長為2,點D,E分別為AB,BC的中點,且AE∩CD=F,點H為邊AC上的一點,且$\overrightarrow{AH}$=$λ\overrightarrow{AC}$(0<λ<1),當(dāng)$\overrightarrow{HF}$•$\overrightarrow{HD}$=1時,實數(shù)λ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上單調(diào)遞減,且有f(2)=0,則使得(x-1)•f(log3x)<0的x的范圍為( 。
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

同步練習(xí)冊答案