6.Rt△ABC中.|AB|=2a(a>0),求直角頂點(diǎn)C的軌跡方程.

分析 以AB為x軸,中垂線為y軸建立坐標(biāo)系,設(shè)直角頂點(diǎn)C(x,y),則利用|OC|=$\frac{1}{2}$|AB|,可得直角頂點(diǎn)C的軌跡方程.

解答 解:以AB為x軸,中垂線為y軸建立坐標(biāo)系,則A(-a,0),B(a,0),
設(shè)直角頂點(diǎn)C(x,y),則利用|OC|=$\frac{1}{2}$|AB|,
可得直角頂點(diǎn)C的軌跡方程x2+y2=a2(x≠±a).

點(diǎn)評(píng) 本題考查直角頂點(diǎn)C的軌跡方程,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列各函數(shù)中,圖象完全相同的是(  )
A.y=2lgx和y=lgx2B.y=$\frac{|x-1|}{x-1}$和y=$\left\{\begin{array}{l}{-1,x∈(-∞,1)}\\{1,x∈(1,+∞)}\end{array}\right.$
C.y=$\frac{{x}^{2}}{x}$和y=xD.y=x-3和y=$\sqrt{(x-3)^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知α是銳角,且sinα=$\frac{\sqrt{6}-\sqrt{2}}{4}$,則cosα=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等邊圓柱(軸截面是正方形的圓柱)的全面積為S,求其內(nèi)接正四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將-$\frac{25}{6}$π化成a+2kπ(k∈Z,0≤a<2π)的形式為( 。
A.-$\frac{25}{6}$π=-5π+$\frac{5}{6}$πB.-$\frac{25}{6}$π=-6π+$\frac{11}{6}$πC.-$\frac{25}{6}$π=-4π-$\frac{π}{6}$D.-$\frac{25}{6}$π=-3π-$\frac{7}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=log2x+log22(2x2)的值域是( 。
A.(-∞,0]B.[4,+∞)C.[0,4]D.[-$\frac{9}{16}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若l∩α=A,b?α,則1與b的位置關(guān)系為相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若一個(gè)空間幾何體的三個(gè)視圖都是直角邊長(zhǎng)為1的等腰直角三角形,則這個(gè)空間幾何體的外接球的表面積和內(nèi)切球的表面積之比是( 。
A.$\frac{18+9\sqrt{3}}{2}$B.18+9$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列各函數(shù)中,最小值為2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=x+\frac{1}{4(x-2)}-1(x>2)$

查看答案和解析>>

同步練習(xí)冊(cè)答案