【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)圖象的交點(diǎn)個(gè)數(shù).

【答案】(1)當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,無(wú)單調(diào)減區(qū)間;當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2)1個(gè).

【解析】

(1)先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;

(2)問(wèn)題轉(zhuǎn)化為求函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,通過(guò)求導(dǎo),得到函數(shù)的單調(diào)區(qū)間,求出的極小值,從而求出函數(shù)的零點(diǎn)個(gè)數(shù)即的交點(diǎn)個(gè)數(shù).

(1)函數(shù)的定義域?yàn)?/span>,,

當(dāng)時(shí),,所以函數(shù)的單調(diào)增區(qū)間是,無(wú)單調(diào)減區(qū)間;

當(dāng)時(shí),;

當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增.

綜上,當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,無(wú)單調(diào)減區(qū)間;

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.

(2)令 ,問(wèn)題等價(jià)于求函數(shù)的零點(diǎn)個(gè)數(shù),

當(dāng)時(shí),,有唯一零點(diǎn);

當(dāng)時(shí),,

當(dāng)時(shí),,函數(shù)為減函數(shù),注意到,,所以有唯一零點(diǎn);

當(dāng)時(shí),由,由,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,注意到

,

所以有唯一零點(diǎn);

當(dāng)時(shí),由得,,

,

所以函數(shù)單調(diào)遞減,在單調(diào)遞增,又,

所以

,所以有唯一零點(diǎn).

綜上,函數(shù)有唯一零點(diǎn),即當(dāng)時(shí)函數(shù)圖象總有一個(gè)交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問(wèn)題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問(wèn)題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬(wàn)有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.

1)求曲線的方程;

2)曲線在點(diǎn)處的切線軸交于點(diǎn).直線分別與直線軸交于點(diǎn),以為直徑作圓,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,試探究:當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)(點(diǎn)與原點(diǎn)不重合)時(shí),線段的長(zhǎng)度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某鎮(zhèn)有一塊空地,其中,.當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中,都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開(kāi)設(shè)兒童游樂(lè)場(chǎng).為安全起見(jiàn),需在的周圍安裝防護(hù)網(wǎng).

(1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長(zhǎng)度;

(2)為節(jié)省投入資金,人工湖的面積要盡可能小,問(wèn)如何設(shè)計(jì)施工方案,可使的面積最小?最小面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于為棱上的點(diǎn),.

(1)若為棱的中點(diǎn),求證:平面;

(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,若存在,使得成立,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰梯形,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,且滿足

(1)求橢圓的方程;

(2)設(shè)傾斜角為的直線交于兩點(diǎn),記的面積為,求取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率;先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定0、12表示沒(méi)有擊中目標(biāo),34、5、6、78、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20隨機(jī)數(shù):

根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

同步練習(xí)冊(cè)答案