【題目】閱讀如圖判斷閏年的流程圖,判斷公元1900年、公元2000年、公元2018年、公元2020年這四年中閏年的個數(shù)為(nMODmn除以m的余數(shù))(

A.1B.2

C.3D.4

【答案】B

【解析】

根據(jù)流程圖進行計算,分析,判斷可得答案.

按照程序框圖進行運算:

,1900除以4的余數(shù)為0,,1900除以100的余數(shù)為0,, 1900除以400的余數(shù)為3,,1900年不是閏年;

,2000除以4的余數(shù)為0,,2000除以100的余數(shù)為0,,2000除以400的余數(shù)為0,,2000年是閏年;

,2018除以4的余數(shù)為2,, 2018年不是閏年;

,2020除以4的余數(shù)為0,,2020除以100的余數(shù)為2,,2020年是閏年,

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,已知ABACAB2,AC4,AA13DBC的中點.

(1) 求直線DC1與平面A1B1D所成角的正弦值;

(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秉承提升學生核心素養(yǎng)的理念,學校開設以提升學生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術課程的學生唱歌、跳舞至少會一項,已知會唱歌的有人,會跳舞的有人,現(xiàn)從中選人,設為選出的人中既會唱歌又會跳舞的人數(shù),且

(1)求選該藝術課程的學生人數(shù);

(2)寫出的概率分布列并計算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)在三棱錐中,底面,,且三棱錐的每個頂點都在球的表面上,則球的表面積為 _______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學學校對高三年級文科學生進行了一次自主學習習慣的自評滿意度的調查,按系統(tǒng)抽樣方法得到了一個自評滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).

1)完善頻率分布直方圖(需寫出計算過程);

2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1m2,并指出選用哪一個數(shù)據(jù)來估計總體的中位數(shù)更合理(需要敘述理由).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于不同四點,直線的斜率滿足, 已知軸重合時, .

1)求橢圓的方程;

2)是否存在定點使得為定值,若存在,求出點坐標并求出此定值,若不存在,

說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運動會在河南鄭州舉行,某項目比賽期間需要安排3名志愿者完成5項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式共有多少種

A.60B.90C.120D.150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種水箱用的浮球是由兩個相同半球和一個圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強該浮球的牢固性,給浮球內置一雙蝶形防壓卡,防壓卡由金屬材料桿,,,,,焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在浮球的內壁上,AC,BD通過浮球中心,且、均與圓柱的底面垂直.

1)設與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;

2)研究表明,四邊形的面積越大,浮球防壓性越強,求四邊形面積取最大值時,點到圓柱上底面的距離

查看答案和解析>>

同步練習冊答案