已知橢圓的離心率,且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若為橢圓上的動(dòng)點(diǎn),為橢圓的右焦點(diǎn),以為圓心,長(zhǎng)為半徑作圓,過(guò)點(diǎn)作圓的兩條切線,(為切點(diǎn)),求點(diǎn)的坐標(biāo),使得四邊形的面積最大.]
(1)依題意得,
                ………………………………3分
解得,                
所以橢圓的方程為.          ………………………………4分
(2)設(shè) ,圓,
其中
,……6分
……7分
在橢圓上,
   
所以,  ………………………8分

,…………………9分
當(dāng)時(shí),,當(dāng)時(shí), …………………10分
所以當(dāng)時(shí),有最大值,
時(shí),四邊形面積取得最大值…11分
此時(shí)點(diǎn)的坐標(biāo)為…………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

、是橢圓的左、右焦點(diǎn),是該橢圓短軸的一個(gè)端點(diǎn),直線與橢圓交于點(diǎn),若成等差數(shù)列,則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.已知是拋物線上一個(gè)動(dòng)點(diǎn),是橢圓上的一個(gè)動(dòng)點(diǎn),定點(diǎn).若軸,且,則的周長(zhǎng)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,且
橢圓經(jīng)過(guò)圓的圓心C。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線與橢圓交于A、B兩點(diǎn),點(diǎn)且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為,則它的漸近線方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動(dòng)點(diǎn).
(1)當(dāng)|AP|+|PF|取最小值時(shí),求;
(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過(guò)點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過(guò)點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個(gè)
不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請(qǐng)
說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)A(x1,y1),B(x2,y2)是拋物線y=2x2上的兩點(diǎn),直線是AB的垂直平分線
(理)當(dāng)直線的斜率為時(shí),則直線在y軸上截距的取值范圍是   
(文)當(dāng)且僅當(dāng)x1+x2      值時(shí),直線過(guò)拋物線的焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

焦點(diǎn)為的拋物線的標(biāo)準(zhǔn)方程是             

查看答案和解析>>

同步練習(xí)冊(cè)答案