已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動(dòng)點(diǎn).
(1)當(dāng)|AP|+|PF|取最小值時(shí),求;
(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過(guò)點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過(guò)點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個(gè)
不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請(qǐng)
說(shuō)明理由.
解:(1)由定義知,當(dāng)P為AH與拋物線的交點(diǎn)時(shí),|PF|=|PH|
此時(shí)|AP|+|PF|=|AH|取得最小值4………………4分
………………6分
(2)由(1)知,橢圓E的焦點(diǎn)為O(0,0),F(xiàn)(2,0)
故中心為(1,0).

所求橢圓方程為………………8分
右準(zhǔn)線方程為………………10分
(3)由條件知,過(guò)A且與x軸垂直的直線
設(shè)滿足條件的直線存在,并設(shè)其方程為
代入………………①
與C交于不同的兩點(diǎn)M、N,故方程①的
………………12分
設(shè)

故直線存在,其傾斜角的取值范圍為…………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率,且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若為橢圓上的動(dòng)點(diǎn),為橢圓的右焦點(diǎn),以為圓心,長(zhǎng)為半徑作圓,過(guò)點(diǎn)作圓的兩條切線,(為切點(diǎn)),求點(diǎn)的坐標(biāo),使得四邊形的面積最大.]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知以F1(-2,0),F2(2,0)為焦點(diǎn)的橢圓與直線xy+4=0有且僅有一個(gè)交點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為(  )
A.3B.2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,
的面積為(  )
A.4 B.6C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點(diǎn), 的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線與拋物線分別相交于兩點(diǎn)
(1)寫(xiě)出拋物線的標(biāo)準(zhǔn)方程;
(2)若,求直線的方程;
(3)若坐標(biāo)原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上,直線與橢圓有公共點(diǎn),求橢圓的長(zhǎng)軸長(zhǎng)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)一座拋物線拱橋在某時(shí)刻水面的寬度為52米,拱頂距離水面6.5米.
(Ⅰ)建立如圖所示的平面直角坐標(biāo)系xOy,試求拱橋所在拋物線的方程;
(Ⅱ)若一竹排上有一4米寬6米高的大木箱,問(wèn)此木排能否安全通過(guò)此橋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線的焦點(diǎn)F作直線交拋物線于A、 B兩點(diǎn),O為拋物線的頂點(diǎn)。則△ABO是一個(gè)
A.等邊三角形;       B.直角三角形;
C.不等邊銳角三角形; D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(2)設(shè)是定點(diǎn),其中滿足.過(guò)的兩條切線,切點(diǎn)分別為,分別交于.線段上異于兩端點(diǎn)的點(diǎn)集記為.證明:
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的離心率為的最小值為     

查看答案和解析>>

同步練習(xí)冊(cè)答案