、是橢圓的左、右焦點,是該橢圓短軸的一個端點,直線與橢圓交于點,若成等差數(shù)列,則該橢圓的離心率為
A.B.C.D.
A
本題考查橢圓的定義和幾何性質(zhì),等差數(shù)列的概念及基本運算.
因為、是橢圓的左、右焦點,是該橢圓短軸的一個端點,所以是橢圓上的點,所以因為
成等差數(shù)列,所以 
,則故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓:,過坐標(biāo)原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線的頂點在原點,焦點為,且過點.
(1)求t的值;
(2)若直線與拋物線只有一個公共點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓的中心在原點,焦點在軸上,長軸是短軸的3倍,且經(jīng)過點,求橢圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線,過能否作一條直線,與雙曲線交于兩點,且點是線段中點?若能,求出的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點M到(3,0)的距離比它到直線ⅹ+4=0的距離小1,則點M的軌跡方程為(   )
A.y²=12ⅹB.y²=12ⅹ(ⅹ?0)
C.y²=6ⅹD.y²=6ⅹ(ⅹ?0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則p的值為(  )           
        B         C         D  4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,且橢圓過點.
(1)求橢圓的方程;
(2)若為橢圓上的動點,為橢圓的右焦點,以為圓心,長為半徑作圓,過點作圓的兩條切線,(為切點),求點的坐標(biāo),使得四邊形的面積最大.]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知以F1(-2,0),F2(2,0)為焦點的橢圓與直線xy+4=0有且僅有一個交點,則橢圓的長軸長為(  )
A.3B.2C.2D.4

查看答案和解析>>

同步練習(xí)冊答案