已知正數(shù)a,b滿足4a+b=30,使得
1
a
+
4
b
取最小值的實數(shù)對(a,b)是
 
考點:基本不等式
專題:不等式的解法及應用
分析:利用“乘1法”和基本不等式的性質即可得出.
解答: 解:∵正數(shù)a,b滿足4a+b=30,
1
a
+
4
b
=
1
30
(4a+b)(
1
a
+
4
b
)
=
1
30
(8+
b
a
+
16a
b
)
1
30
(8+2
b
a
16a
b
)
=
8
15

當且僅當b=4a=15時取等號.
∴使得
1
a
+
4
b
取最小值的實數(shù)對(a,b)是(
15
4
,15)

故答案為:(
15
4
,15)
點評:本題考查了“乘1法”和基本不等式的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin(x-
π
6
),x∈R
(Ⅰ)求f(x)的最小正周期和對稱中心;
(Ⅱ)若將f(x)的圖象向左平移m(m>0)個單位后所得到的圖象關于y軸對稱,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
4
=1的左、右焦點分別為F1、F2,P是雙曲線上一點,PF1的中點在y軸上,線段PF2的長為
4
3
,則雙曲線的實軸長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題“?x∈R,x2-2x+m≤0”是假命題,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,F(xiàn)為拋物線C:y2=4x的焦點,P為拋物線C上一點,若|PF|=4,則△POF的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零實數(shù),如果f(2013)=-1,那么f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對任意正整數(shù)a、b滿足條件f(a+b)=f(a)•f(b)且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2008)
f(2007)
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-3x2+1-
3
a
(a≠0)
(Ⅰ)若f(x)的圖象在x=-1處的切線與直線y=-
1
3
x+1垂直,求實數(shù)a的取值;
(Ⅱ)求函數(shù)y=f(x)的單調區(qū)間;
(Ⅲ)若a=1時,過點M(2,m)(m≠-6),可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式|x-1|-|x+2|≥a的解集為R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案