【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點(diǎn),將△ACD沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.
【答案】
(1)解:證明:∵△BCD為正三角形,AD=AB=2,易知O為BD的中點(diǎn),則AC⊥BD,
又PO平面PBD,所以AC⊥平面PBD,∵AC平面PAC,∴平面PAC⊥平面PD B.
(2)解:過(guò)P作DB的垂線,垂足為H,則PH垂直平面ABCD,∠PHO=60°,
以O(shè)B為x后,OC為y軸,過(guò)O垂直于平面ABC向上的直線為z軸建立如圖所示空間直角坐標(biāo)系,
則A(0,﹣1,0), , ,
易知平面PBD的法向量為 , , ,
設(shè)平面ABP的法向量為 ,
則由 得 ,
取 , ,
二面角A﹣PB﹣D的余弦值為 .
【解析】(1)易知O為BD的中點(diǎn),則AC⊥BD,即AC⊥平面PBD,即平面PAC⊥平面PDB.(2)過(guò)P作DB的垂線,垂足為H,則PH垂直平面ABCD,∠PHO=60°,以O(shè)B為x后,OC為y軸,過(guò)O垂直于平面ABC向上的直線為z軸建立如圖所示空間直角坐標(biāo)系,利用向量法求解.
【考點(diǎn)精析】掌握平面與平面垂直的判定是解答本題的根本,需要知道一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實(shí)際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個(gè)箏形商業(yè)區(qū)AEFG,箏形的頂點(diǎn)A,E,F(xiàn),G為商業(yè)區(qū)的四個(gè)入口,其中入口F在邊BC上(不包含頂點(diǎn)),入口E,G分別在邊AB,AD上,且滿(mǎn)足點(diǎn)A,F(xiàn)恰好關(guān)于直線EG對(duì)稱(chēng),矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).
(1)請(qǐng)確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點(diǎn).
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x﹣1)<f(x)對(duì)任意的x>1恒成立,則k的最大值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ,若曲線f(x)在點(diǎn)(e,f(e))處的切線與直線e2x﹣y+e=0垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(2)求證:當(dāng)x>1時(shí), > .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),為偶函數(shù),函數(shù)的圖象與直線相切.
(1)求的解析式;
(2)已知函數(shù)且,求的單調(diào)遞減區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,點(diǎn)A、B是函數(shù)f(x)圖象上不同兩點(diǎn),則∠AOB(O為坐標(biāo)原點(diǎn))的取值范圍是( )
A.(0, )
B.(0, ]
C.(0, )
D.(0, ]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com