【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
【答案】(1) (2)
【解析】試題分析:設(shè)出,由直線的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點軸時,不合題意;當(dāng)直線斜率存在時,設(shè)直線,聯(lián)立直線方程和橢圓方程,由判別式大于零求得的范圍,再由弦長公式求得,由點到直線的距離公式求得到的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進一步求出值,則直線方程可求.
試題解析:(1)設(shè),因為直線的斜率為,
所以, .
又
解得,
所以橢圓的方程為.
(2)解:設(shè)
由題意可設(shè)直線的方程為: ,
聯(lián)立消去得,
當(dāng),所以,即或時
.
所以
點到直線的距離
所以,
設(shè),則,
,
當(dāng)且僅當(dāng),即,
解得時取等號,
滿足
所以的面積最大時直線的方程為: 或.
【方法點晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2) 為橢圓上任意一點,若,求的最大值和最小值.
(3)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點分別為、,當(dāng)動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過原點,且它的傾斜角α= ,求l與圓E的交點A的極坐標(biāo)(點A不是坐標(biāo)原點);
(2)直線m過線段OA中點M,且直線m交圓E于B、C兩點,求||MB|﹣|MC||的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并給出證明;
(3)若x∈時,函數(shù)f(x)的值域是[0,1],求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設(shè)A(x1 , y1),B(x2 , y2)滿足 = .
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com