【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.

【答案】
(1)證明:∵四邊形ABCD是菱形,∴AC⊥BD,

∵BE⊥平面ABCD,∴BE⊥AC,

∴AC⊥平面BEFD,

∵AC平面ACF,∴平面ACF⊥平面BEFD


(2)解:設(shè)AC與BD的交點(diǎn)為O,由(1)得AC⊥BD,

分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,

∵BE⊥平面ABCD,∴BE⊥BD,

∵DF∥BE,∴DF⊥BD,

∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2

設(shè)OA=a,(a>0),

由題設(shè)得A(a,0,0),C(﹣a,0,0),E(0, ),F(xiàn)(0,﹣ ,2),

設(shè)m=(x,y,z)是平面AEF的法向量,

,取z=2 ,得 =( ),

設(shè) 是平面CEF的一個(gè)法向量,

,取 ,得 =(﹣ ,1,2 ),

∵二面角A﹣EF﹣C是直二面角,

=﹣ +9=0,解得a= ,

∵BE⊥平面ABCD,

∴∠BAE是直線AE與平面ABCD所成的角,

∴AB= =2,∴tan

∴直線AE與平面ABCD所成角的正切值為


【解析】(1)推導(dǎo)出AC⊥BD,BE⊥AC,從而AC⊥平面BEFD,由此能證明平面ACF⊥平面BEFD.(2)設(shè)AC與BD的交點(diǎn)為O,分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面ABCD所成角的正切值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點(diǎn),將△ACD沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0),其準(zhǔn)線方程為x+1=0,直線l過(guò)點(diǎn)T(t,0)(t>0)且與拋物線交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線方程,并證明: 的值與直線l傾斜角的大小無(wú)關(guān);
(2)若P為拋物線上的動(dòng)點(diǎn),記|PT|的最小值為函數(shù)d(t),求d(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=﹣1,an+1=2an+3n﹣1(n∈N*),則其前n項(xiàng)和Sn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元.

若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和,寫出的表達(dá)式;

為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)任意的x∈R,3a(sinx+cosx)+2bsin2x≤3(a,b∈R)恒成立,則當(dāng)a+b取得最小值時(shí),a的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)總體分為A,B兩層,其個(gè)體數(shù)之比為5:1,用分層抽樣方法從總體中抽取一個(gè)容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線交于兩點(diǎn),

(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;

(Ⅱ)若軸上存在點(diǎn),當(dāng)變動(dòng)時(shí),總有,試求出坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案