【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實(shí)際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個(gè)箏形商業(yè)區(qū)AEFG,箏形的頂點(diǎn)A,E,F(xiàn),G為商業(yè)區(qū)的四個(gè)入口,其中入口F在邊BC上(不包含頂點(diǎn)),入口E,G分別在邊AB,AD上,且滿足點(diǎn)A,F(xiàn)恰好關(guān)于直線EG對稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).

(1)請確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?

【答案】
(1)解:以A為原點(diǎn),AB所在直線為x軸,建立如圖所示平面直角坐標(biāo)系,

則A(0,0),

設(shè)F(2,2a)(0<2a<4),則AF的中點(diǎn)為(1,a),斜率為a,

而EG⊥AF,故EG的斜率為 ,

則EG的方程為 ,

令x=0,得 ;

令y=0,得 ;

,得

,

即入口F的選址需滿足BF的長度范圍是 (單位:km)


(2)解:因?yàn)? ,

故該商業(yè)區(qū)的環(huán)境舒適度指數(shù)

所以要使 最大,只需S1最小.

設(shè) ,

,

令f'(a)=0,得 (舍),

a,f'(a),f(a)的情況如下表:

a

2﹣

(2﹣ ,

1

f'(a)

0

+

f(a)

極小

故當(dāng) ,即入口F滿足 km時(shí),該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大


【解析】(1)以A為原點(diǎn),AB所在直線為x軸,建立如圖所示平面直角坐標(biāo)系,則A(0,0),設(shè)F(2,2a)(0<2a<4),則AF的中點(diǎn)為(1,a),斜率為a,EG⊥AF,求出EG的方程,列出不等式即可求出;(2)因?yàn)? ,該商業(yè)區(qū)的環(huán)境舒適度指數(shù) ,所以要使 最大,只需S1最。D(zhuǎn)化為求其最小值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到下表2:

(1)求關(guān)于的線性回歸方程;

(2)通過(1)中的方程,求出關(guān)于的回歸方程;

(3)用所求回歸方程預(yù)測到2010年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線相交于A、B兩點(diǎn).

1)求證:

2)當(dāng)的面積等于時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x3+x2﹣ax+3a在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.

(1)求A,ω,φ的值;
(2)設(shè)θ為銳角,且f(θ)=﹣ ,求f(θ﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐D﹣ABC及其正視圖和側(cè)視圖如右圖所示,且頂點(diǎn)A,B,C,D均在球O的表面上,則球O的表面積為(
A.32π
B.36π
C.128π
D.144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點(diǎn),將△ACD沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案