【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用勾股+(股-勾)朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn),得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. 134 B. 866 C. 300 D. 500
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示三角形數(shù)陣中,aij為第i行第j個(gè)數(shù),若amn=2017,則實(shí)數(shù)對(duì)(m,n)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均數(shù)和方差分別為( )
A.2,
B.4,3
C.4,
D.2,1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,左焦點(diǎn)為F(﹣1,0),過(guò)點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求k的取值范圍;
(3)在y軸上,是否存在定點(diǎn)E,使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0 , y0)處的切線方程為l:y=h(x).當(dāng)x≠x0時(shí),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”.當(dāng)a=8時(shí),問(wèn)函數(shù)y=f(x)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,那么( )
A.甲是乙成立的充分不必要條件
B.甲是乙成立的必要不充分條件
C.甲是乙成立的充要條件
D.甲是乙成立的非充分非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)對(duì)任意的x∈R都有f′(x)>f(x)恒成立,則( )
A.3f(ln2)>2f(ln3)
B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)
D.3f(ln2)與2f(ln3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(x3﹣1)2+1,下列結(jié)論中正確的是( )
A.x=1是函數(shù)f(x)的極小值點(diǎn),x=0是函數(shù)f(x)的極大值點(diǎn)
B.x=1及x=0均是函數(shù)f(x)的極大值點(diǎn)
C.x=1是函數(shù)f(x)的極大值點(diǎn),x=0是函數(shù)f(x)的極小值點(diǎn)
D.x=1是函數(shù)f(x)的極小值點(diǎn),函數(shù)f(x)無(wú)極大值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)設(shè)n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間( )內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè)n=2,若對(duì)任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com