如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.
 
(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),)且直線PBPC分別交直線OA,兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直線l1和l2相交于點(diǎn)M,l1⊥l2,點(diǎn)N∈l1,以A、B為端點(diǎn)的曲線段C上任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且直線x=4是它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)兩準(zhǔn)線間的距離為,焦距為2
(2)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過P點(diǎn)作長(zhǎng)軸的垂線恰好過橢圓的一個(gè)焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形CDEF內(nèi)接于橢圓,且它的四條邊與坐標(biāo)軸平行,正方形GHPQ的頂點(diǎn)G,H在橢圓上,頂點(diǎn)P,Q在正方形的邊EF上.且CD=2PQ=

(1)求橢圓的方程;
(2)已知點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m:≠0),l交橢圓于A,B兩個(gè)不同點(diǎn),求證:直線MA,MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點(diǎn)到漸近線的距離為1,求雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案