已知橢圓
(a>b>0)與雙曲線
有公共的焦點,C
2的一條漸近線與以C
1的長軸為直徑的圓相交于
兩點.若C
1恰好將線段
三等分,則
A.a(chǎn)2 = | B.a(chǎn)2="13" | C.b2= | D.b2=2 |
兩圓錐曲線有公共焦點得
,雙曲線的一條漸近線方程為
,圓的直徑是2a,設(shè)直線
與橢圓的交點為A
,B
,聯(lián)立
,得
,依題意:
,
,解得b
2=
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線
在點P處的切線
分別交x軸、y軸于不同的兩點A、B,
。當(dāng)點P在C上移動時,點M的軌跡為D。
(1)求曲線D的方程:
(2)圓心E在y軸上的圓與直線
相切于點P,當(dāng)|PE|=|PA|,求圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,討論方程
所表示的圓錐曲線類型,并求其焦點坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為
,設(shè)動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II)過定點T(-1,0)的動直線
與曲線C交于P,Q兩點,若
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(21) (本小題滿分15分)
直線
分拋物線
與
軸所圍成圖形為面積相等的兩個部分,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的左焦點
,若橢圓上存在一點
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知兩點
及橢圓
:
,過點
作斜率為
的直線
交橢圓
于
兩點,設(shè)線段
的中點為
,連結(jié)
,試問當(dāng)
為何值時,直線
過橢圓
的頂點?
(Ⅲ) 過坐標(biāo)原點
的直線交橢圓
:
于
、
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連結(jié)
并延長交橢圓
于
,求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線y=x-
被橢圓x
2+4y
2=4截得的弦長為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
求橢圓
( )。
查看答案和解析>>