函數(shù)f(x)=
3x2
的導(dǎo)數(shù)是( 。
A、3x2
B、
1
3
x2
C、
2
3
3x
D、-
1
2
考點:導(dǎo)數(shù)的運算
專題:計算題
分析:根據(jù)初等函數(shù)的導(dǎo)數(shù)公式f(x)=xα,則f′(x)=αxα-1,問題得以解決.
解答: 解:f(x)=
3x2
=x
2
3

f′(x)=
2
3
x-
1
3
=
2
3
3x
,
故選:C.
點評:本題主要考查了初等函數(shù)的導(dǎo)數(shù)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=ax+2-2(a>0且a≠1)的圖象恒過定點A,若點A在直線
x
m
+
y
n
=-1上,且m>0,n>0,則m+2n的最小值為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2x+
3
sinxcosx在區(qū)間[-
π
4
,
π
3
]上的最大值為(  )
A、
1
2
B、
1+
3
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x
,則
lim
△x→0
-f(2+△x)+f(2)
△x
的值是( 。
A、
1
4
B、2
C、-
1
4
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y+1)2=3,從點P(-1,-3)發(fā)出的光線,經(jīng)x軸反射后恰好經(jīng)過圓心C,則入射光線的斜率為( 。
A、-
4
3
B、-
2
3
C、
4
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第四象限的角,且sinα•cosα=-
12
25
,則sinα-cosα=( 。
A、-
49
25
B、
49
25
C、
7
5
D、-
7
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3lnx+x,f(x)與g(x)的圖象有交點(1,1),若g′(x)=x2lnx3-2x2,求f′(e)+g(e)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(1)如圖所示,若
AM
=
1
4
MB
,求直線l的方程;
(2)若坐標原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(1)由以上統(tǒng)計數(shù)據(jù)求下面2乘2列聯(lián)表中的b,c的值,并問是否有99%的把握認為“月收入以55百元為分界點對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) 月收入不低于55百元的人數(shù) 合計
贊成 a=29       b 32
不贊成        c       d=7
合計  50
(2)若對在[15,25),[25,35)的被調(diào)查中各隨機選取一人進行追蹤調(diào)查,記選中的2人中不贊成“樓市限購令”人數(shù)為ξ,求隨機變量ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案