【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )

A.2k(k∈Z) B.2k或2k+ (k∈Z)

C.0 D.2k或2k- (k∈Z)

【答案】D

【解析】令g(x)=0,得f(x)=x+m.因?yàn)楹瘮?shù)f(x)=x2在[0,1]上的兩個(gè)端點(diǎn)分別為(0,0),(1,1),所以過這兩點(diǎn)的直線為y=x.當(dāng)直線y=x+m與f(x)=x2(x∈[0,1])的圖象相切時(shí),與f(x)在x∈(1,2]上的圖象相交,也就是兩個(gè)交點(diǎn),此時(shí)g(x)有兩個(gè)零點(diǎn),可求得此時(shí)的切線方程為y=x-.根據(jù)周期為2,得m=2k或2k- (k∈Z).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).

(1)求的長;

(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中, 的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 的極坐標(biāo)方程.

)說明是哪種曲線,并將的方程化為普通方程;

有兩個(gè)公共點(diǎn),頂點(diǎn)的極坐標(biāo),求線段的長及定點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點(diǎn),GPB的中點(diǎn).

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點(diǎn)分別為x1,x2,則x1+x2的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為 .

(1)化曲線的參數(shù)方程為普通方程,化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;

(2)直線為參數(shù))過曲線軸負(fù)半軸的交點(diǎn),求與直線平行且與曲線相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1是實(shí)數(shù)集上的奇函數(shù),求的值;

2用定義證明在實(shí)數(shù)集上單調(diào)遞增;

3值域?yàn)?/span>,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案