【題目】已知函數(shù).
(1)當時,求函數(shù)在區(qū)間上的最大值與最小值;
(2)若在上存在,使得成立,求的取值范圍.
【答案】(1), ;(2).
【解析】試題分析:(1)由得增區(qū)間, 得減區(qū)間,進而得,比較端點處函數(shù)值可得;(2)只需要函數(shù)在上的最小值小于零,利用導數(shù)研究的單調(diào)性,討論三種情況,分別求得的最小值,進而分別求得的取值范圍,求并集即可.
試題解析:(1)當時, ,
,
令,得,
當變化時, , 的變化情況如下表:
1 | |||
0 | |||
極小值 |
因為, ,
,
所以在區(qū)間上的最大值與最小值分別為:
, .
(2)設.若在上存在,使得,即成立,則只需要函數(shù)在上的最小值小于零.
又
令,得(舍去)或.
①當,即時, 在上單調(diào)遞減,
故在上的最小值為,由,可得.
因為,所以.
②當,即時, 在上單調(diào)遞增,
故在上的最小值為,由,
可得(滿足).
③當,即時, 在上單調(diào)遞減,在上單調(diào)遞增,故在上的最小值為.
因為,所以,
所以,即,不滿足題意,舍去.
綜上可得或,
所以實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為。
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為喜愛打籃球與性別有關?說明你的理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現(xiàn)從高一學生中抽取100人做調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取一人抽到喜歡游泳的學生的概率為.
(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為喜歡游泳與性別有關?并說明你的理由;
(Ⅱ)針對問卷調(diào)查的100名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一段演繹推理:“直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結論是錯誤的,這是因為 ( )
A. 大前提錯誤 B. 小前提錯誤 C. 推理形式錯誤 D. 非以上錯誤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為招聘新員工設計了一個面試方案:應聘者從6道備選題中一次性隨機抽取3道題,按題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學期望;
(2)請分析比較甲、乙兩人誰面試通過的可能性大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當0≤x≤1時,f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個零點,則實數(shù)m的值為( )
A.2k(k∈Z) B.2k或2k+ (k∈Z)
C.0 D.2k或2k- (k∈Z)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com