【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調(diào)性,并求出g(a)的最小值.

【答案】
(1)解:f(x)=ax2﹣2x+1的對稱軸為x=

≤a≤1,∴1≤ ≤3,

∴f(x)在[1,3]上的最小值f(x)min=N(a)=f( )=1﹣

∵f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),

∴①當(dāng)1≤ ≤2,即 ≤a≤1時,

M(a)=f(3)=9a﹣5,N(a)=f( )=1﹣

g(a)=M(a)﹣N(a)=9a+ ﹣6.

②當(dāng)2< ≤3時.即 ≤a< 時,

M(a)=f(1)=a﹣1,N(a)=f( )=1﹣

g(a)=M(a)﹣N(a)=a+ ﹣2.

∴g(a)=


(2)解:由(1)可知當(dāng) ≤a≤1時,g(a)=M(a)﹣N(a)=9a+ ﹣6≥0,當(dāng)且僅當(dāng)a= 時取等號,所以它在[ ,1]上單調(diào)遞增;

當(dāng) ≤a< 時,g(a)=M(a)﹣N(a)=a+ ﹣2≥0,當(dāng)且僅當(dāng)a=1時取等號,所以g(a)在[ ]單調(diào)遞減.

∴g(a)的最小值為g( )=9×


【解析】(1)明確f(x)=ax2﹣2x+1的對稱軸為x= ,由 ≤a≤1,知1≤ ≤3,可知f(x)在[1,3]上單調(diào)遞減,N(a)=f( )=1﹣ .由a的符號進(jìn)行分類討論,能求出g(a)的解析式;(2)根據(jù)(1)的解答求g(a)的最值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較,以及對二次函數(shù)在閉區(qū)間上的最值的理解,了解當(dāng)時,當(dāng)時,;當(dāng)時在上遞減,當(dāng)時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程選講.

在平面直角坐標(biāo)系中,曲線為參數(shù),實(shí)數(shù)),曲線

為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時, ;當(dāng)時, .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

)若函數(shù)有兩個極值點(diǎn),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過橢圓右焦點(diǎn)的直線交橢圓兩點(diǎn), 的中點(diǎn),且直線的斜率為

求橢圓的方程;

設(shè)另一直線與橢圓交于兩點(diǎn),原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個交點(diǎn)分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體如圖所示.其中為矩形, 為等腰直角三角形, ,四邊形為梯形,且 , .

(1)若為線段的中點(diǎn),求證: 平面.

(2)線段上是否存在一點(diǎn),使得直線與平面所成角的余弦值等于?若存在,請指出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1 CD1,B1C,現(xiàn)有以下幾個結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖像是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊, ,那么下面說法正確的是( )

A. 平面平面

B. 四面體的體積是

C. 二面角的正切值是

D. 與平面所成角的正弦值是

查看答案和解析>>

同步練習(xí)冊答案