14.復(fù)數(shù)z=(3+4i)2的虛部為24,z的共軛復(fù)數(shù)$\overline z$=-7-24i.

分析 利用復(fù)數(shù)的運算法則、虛部的定義、共軛復(fù)數(shù)的定義即可得出.

解答 解:z=(3+4i)2=-7+24i,其虛部為 24,z的共軛復(fù)數(shù)$\overline z$=-7-24i.
故答案分別為:24;-7-24i.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、虛部數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.方程x+x-1-2=log3x的實數(shù)解的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$的最小值是2,則實數(shù)c的取值范圍是( 。
A.c≤1B.c≥1C.c<0D.c∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求(∁UA)∩(∁UB),(∁UA)∪(∁UB),∁U(A∪B),∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)求證f(x)+f($\frac{1}{x}$)是定值;
(3)求f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2014)+f($\frac{1}{2014}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)用分?jǐn)?shù)指數(shù)冪表示下式$\sqrt{\frac{a^2}\sqrt{\frac{b^3}{a}\sqrt{\frac{a}{b^3}}}}$(a>0,b>0)
(2)計算:$lg12.5-lg\frac{5}{8}+lg\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點P(x,y)是圓(x+3)2+(y+4)2=1的任一點,則$\sqrt{{x^2}+{y^2}}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)${(\frac{8}{27})^{\frac{2}{3}}}+{(9.6)^0}-{(1.5)^{-2}}-{2^{{{log}_{\frac{1}{2}}}2}}$
(2)(log23+log83)(log92+log32)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=x2-ax+4在(-∞,5]上遞減,在[5,+∞)上遞增,則實數(shù)a=10.

查看答案和解析>>

同步練習(xí)冊答案