5.若函數(shù)f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$的最小值是2,則實(shí)數(shù)c的取值范圍是(  )
A.c≤1B.c≥1C.c<0D.c∈R

分析 化簡(jiǎn)f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$=$\sqrt{{x}^{2}+c}$+$\frac{1}{\sqrt{{x}^{2}+c}}$,從而利用基本不等式可得1-c≥0,從而解得.

解答 解:∵f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$=$\sqrt{{x}^{2}+c}$+$\frac{1}{\sqrt{{x}^{2}+c}}$,
∴f(x)≥2,
(當(dāng)且僅當(dāng)$\sqrt{{x}^{2}+c}$=$\frac{1}{\sqrt{{x}^{2}+c}}$,即x2=1-c有解時(shí),等號(hào)成立),
故1-c≥0,
解得,c≤1;
故選:A.

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用及函數(shù)的最值的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求數(shù)列2-$\frac{1}{3}$,4+$\frac{1}{9}$,6-$\frac{1}{27}$,8+$\frac{1}{81}$,…,2n+$\frac{1}{(-3)^{n}}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若執(zhí)行如圖的程序框圖,則輸出的n的值是( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,其中b=c=2,若函數(shù)f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}x$的極大值是cosA,則△ABC的面積等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在數(shù)列{an}中,a1=$\frac{5}{3}$,且3an+1=an+2.
(1)設(shè)bn=an-1,證明:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公項(xiàng);
(2)設(shè)${c_n}=log_3^{\frac{{{{({a_n}-1)}^2}}}{4}}$,數(shù)列$\left\{{\frac{1}{{{c_n}{c_{n+2}}}}}\right\}$的前n項(xiàng)和為Tn,是否存在最小的正整數(shù)m,使得對(duì)于任意的n∈N*,均有Tn<$\frac{m}{16}$成立,若存在,求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(3-x)+$\frac{1}{\sqrt{x+2}}$的定義域?yàn)榧螦,集合B={x|x<a}.
(1)求集合A;
(2)若A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)z=$\frac{a-i}{1-i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)3-z的共軛復(fù)數(shù)是( 。
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)z=(3+4i)2的虛部為24,z的共軛復(fù)數(shù)$\overline z$=-7-24i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x|1≤x<4},B={x|2a≤x<3-a}.若A∪B=A,則實(shí)數(shù)a的取值范圍$a≥\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案