【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).

……

(1)求第2行和第3行的通項(xiàng)公式

(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;

(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.

【答案】(1).

(2)見證明;(3).

【解析】

(1)根據(jù)等差數(shù)列和等比數(shù)列的定義即可求出相應(yīng)的通項(xiàng)公式,(2)根據(jù)條件建立方程關(guān)系即可求出f(i,1)的表達(dá)式.(3)根據(jù)條件尋找等比數(shù)列g(shù)(i),即可得到結(jié)論.

(1)

.

(2)由已知,第一行是等差數(shù)列,假設(shè)第行是以為公差的等差數(shù)列,

則由

(常數(shù))知第行的數(shù)也依次成等差數(shù)列,且其公差為.綜上可得,數(shù)表中除最后2行以外每一行都成等差數(shù)列;

由于,,所以,所以

,由

,

于是,

,又因?yàn)?/span>,

所以,數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列,

所以,,所以.

(3),

,

.

,

,

,則當(dāng)時(shí),都有,

∴適合題設(shè)的一個(gè)等比數(shù)列為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)上的點(diǎn),且 .

(1)求證:對(duì)任意的 ,都有.

(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓與圓關(guān)于直線對(duì)稱.

1)求圓的方程;

2)過直線上的點(diǎn)分別作斜率為,4的兩條直線,求使得被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體中,動(dòng)點(diǎn)在線段上運(yùn)動(dòng),且有.

(1)若,求證:

(2)若二面角的平面角的余弦值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球O為三棱錐SABC的外接球, ,則球O的表面積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場(chǎng)所.天壇公園中的圜丘臺(tái)共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠有方木料90,五合板600,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個(gè)書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤(rùn)80元,出售一個(gè)書櫥可獲利潤(rùn)120元.

(1)如果只安排生產(chǎn)書桌,可獲利潤(rùn)多少?

(2)怎樣安排生產(chǎn)可使所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an} 滿足a1=a,=can+1﹣c(n∈N*),其中a、c為實(shí)數(shù),且c≠0.

(1)求數(shù)列{an} 的通項(xiàng)公式;

(2)設(shè)a=,c=,bn=n(1﹣an)(n∈N*),求數(shù)列 {bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案