已知橢圓的離心率為,短軸端點分別為.
(1)求橢圓的標(biāo)準方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個不同點,直線軸交于點,判斷以線段為直徑的圓是否過點,并說明理由.
(1)橢圓的標(biāo)準方程為;(2)點不在以線段為直徑的圓上.

試題分析:(1)求橢圓的標(biāo)準方程,已知橢圓的離心率為,短軸端點分別為,可設(shè)橢圓方程為,由,可得,從而得橢圓的標(biāo)準方程;(2)由于,是橢圓上關(guān)于軸對稱的兩個不同點,可設(shè),若點在以線段為直徑的圓上,則,即,即,因此可寫出直線的方程為,令,得,寫出向量的坐標(biāo),看是否等于0,即可判斷出.
(1)由已知可設(shè)橢圓的方程為:             1分
,可得,                              3分
解得,                           4分
所以橢圓的標(biāo)準方程為.                           5分
(2)法一:設(shè)                              6分
因為
所以直線的方程為,                   7分
,得,所以.                         8分
所以                          9分
所以,                     10分
又因為,代入得                11分
因為,所以.                12分
所以,                              13分
所以點不在以線段為直徑的圓上.                    14分
法二:設(shè)直線的方程為,則.          6分
化簡得到,
所以,所以,                               8分
所以,
所以,所以                               9分
所以                                     10分
所以,                                  12分
所以,                                                               13分
所以點不在以線段為直徑的圓上.                                      14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點軸的平行線與直線相交于點為坐標(biāo)原點).

(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設(shè)點).
(1)指出,并求的關(guān)系式();
(2)求)的通項公式,并指出點列,,向哪一點無限接近?說明理由;
(3)令,數(shù)列的前項和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,點,線段的中點在拋物線上. 設(shè)動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標(biāo)平面上是否存在定點,使得圓恒過點?若存在,求出的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的圓心在坐標(biāo)原點,且恰好與直線相切,設(shè)點A為圓上一動點,軸于點,且動點滿足,設(shè)動點的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點,且過點D的雙曲線的離心率為e1;以C,D為焦點,且過點A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2為雙曲線=1(a>0,b>0)的左、右焦點,過點F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足||=3||,則此雙曲線的漸近線方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=﹣x2上的點到直線4x+3y﹣8=0距離的最小值是(  )
A.B.C.D.3

查看答案和解析>>

同步練習(xí)冊答案