已知F1、F2為雙曲線=1(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足||=3||,則此雙曲線的漸近線方程為________.
y=±x
由雙曲線的性質(zhì)可推得||=b,
則||=3b,
在△MF1O中,||=a,||=c,
cos∠F1OM=-
由余弦定理可知=-,
又c2=a2+b2,可得a2=2b2,
,
因此漸近線方程為y=±x.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長(zhǎng)交橢圓于點(diǎn),過(guò)點(diǎn)軸的垂線交橢圓于另一點(diǎn),連接.

(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓和橢圓的離心率相同,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),過(guò)點(diǎn)作直線交橢圓、兩點(diǎn),且恰為弦的中點(diǎn)。求證:無(wú)論點(diǎn)怎樣變化,的面積為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn).設(shè)弦的中點(diǎn)為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點(diǎn),求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若存在過(guò)點(diǎn)的直線與曲線都相切,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對(duì)稱的兩個(gè)不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過(guò)點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果橢圓的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是 (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為雙曲線的左右焦點(diǎn),點(diǎn)上,,則(         )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案