設(shè)拋物線的焦點為,點,線段的中點在拋物線上. 設(shè)動直線與拋物線相切于點,且與拋物線的準(zhǔn)線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標(biāo)平面上是否存在定點,使得圓恒過點?若存在,求出的坐標(biāo);若不存在,說明理由.
(1)  (2)見解析  (3)存在

試題分析:
(1)判斷拋物線的焦點位置,得到焦點坐標(biāo),利用中點坐標(biāo)公式得到FA的中點坐標(biāo)帶入拋物線即可求的P的值.
(2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來替代m,得到P點的坐標(biāo),拋物線準(zhǔn)線與直線的方程可得到Q點的坐標(biāo),利用中點坐標(biāo)公式可得到PQ中點坐標(biāo),計算中點到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系(點線距離小于或者等于半徑,即相交或者相切).
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線對稱性知點軸上,設(shè)點坐標(biāo)為,則M點需滿足,即向量內(nèi)積為0,即可得到M點的坐標(biāo),M點的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點,如若不然,則不存在.
試題解析:
(1)利用拋物線的定義得,故線段的中點的坐標(biāo)為,代入方程得,解得。                  2分
(2)由(1)得拋物線的方程為,從而拋物線的準(zhǔn)線方程為     3分
得方程,
由直線與拋物線相切,得                4分
,從而,即,                   5分
,解得,                     6分
的中點的坐標(biāo)為
圓心軸距離,
 
 
所圓與軸總有公共點.           8分
(或 由, ,以線段為直徑的方程為:


,所圓與軸總有公共點).           9分
(3)假設(shè)平面內(nèi)存在定點滿足條件,由拋物線對稱性知點軸上,
設(shè)點坐標(biāo)為,             10分
由(2)知
 。
得,
所以,即           13分
所以平面上存在定點,使得圓恒過點.            14分
證法二:由(2)知,,的中點的坐標(biāo)為

所以圓的方程為           11分
整理得           12分
上式對任意均成立,
當(dāng)且僅當(dāng),解得            13分
所以平面上存在定點,使得圓恒過點.            14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為、,短軸兩個端點為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的離心率,原點到過點,的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點關(guān)于直線的對稱點為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點,,且都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于AB兩點,設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸端點分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個不同點,直線軸交于點,判斷以線段為直徑的圓是否過點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于曲線=1,給出下面四個命題:
(1)曲線不可能表示橢圓;
(2)若曲線表示焦點在x軸上的橢圓,則1<;
(3)若曲線表示雙曲線,則<1或>4;
(4)當(dāng)1<<4時曲線表示橢圓,其中正確的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當(dāng)點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當(dāng)點P在直線l上移動時,求|AF|·|BF|的最小值.

查看答案和解析>>

同步練習(xí)冊答案