【題目】如圖,在正三棱柱中,AB=3,=4,M為的中點(diǎn),P是BC邊上的一點(diǎn),且由點(diǎn)P沿棱柱側(cè)面經(jīng)過(guò)棱到M點(diǎn)的最短路線(xiàn)長(zhǎng)為,設(shè)這條最短路線(xiàn)與的交點(diǎn)為N,求
(1)該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線(xiàn)長(zhǎng).
(2)PC和NC的長(zhǎng)
(3)平面NMP與平面ABC所成二面角(銳角)的大小(用反三角函數(shù)表示)
【答案】(1)(2)PC=2,NC= (3)
【解析】
(1)由展開(kāi)圖為矩形,用勾股定理求對(duì)角線(xiàn)長(zhǎng).
(2)在側(cè)面展開(kāi)圖中三角形MAP是直角三角形,可以求出線(xiàn)段AP的長(zhǎng)度,進(jìn)而可以求出PC的長(zhǎng)度,再由相似比可以求得CN的長(zhǎng)度.
(3)補(bǔ)形,找出兩面的交線(xiàn),由三垂線(xiàn)定理作出二面角的平面角,二面角易求.
解:(1)正三棱柱的側(cè)面展開(kāi)圖是一個(gè)長(zhǎng)為9,寬為4的矩形
故其對(duì)角線(xiàn)長(zhǎng)為;
(2)如圖,將側(cè)面繞棱旋轉(zhuǎn)120使其與側(cè)面在同一平面上,點(diǎn)P運(yùn)動(dòng)到點(diǎn)的位置,連接,則就是由點(diǎn)P沿棱柱側(cè)面經(jīng)過(guò)棱到點(diǎn)M的最短路線(xiàn)
設(shè),則,在中,由勾股定理得x=2,
,
,
;
(3)如圖,連接,則就是平面NMP與平面ABC的交線(xiàn),作NH⊥于H,又⊥平面ABC,連接CH,由三垂線(xiàn)定理得,CH⊥,
∴∠NHC就是平面NMP與平面ABC所成二面角的平面角(銳角),
在中, ,
,
在中, ,
故平面NMP與平面ABC所成二面角(銳角)的大小為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形△ABC的兩腰AB和AC所在直線(xiàn)的方程分別為和是底邊BC上一點(diǎn),求:
(1)底邊BC所在直線(xiàn)的方程;
(2)△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般來(lái)說(shuō),一個(gè)人腳掌越長(zhǎng),他的身高就越高,現(xiàn)對(duì)10名成年人的腳掌與身高進(jìn)行測(cè)量,得到數(shù)據(jù)(單位:cm)作為樣本如表所示:
腳掌長(zhǎng)() | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高() | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表數(shù)據(jù)中,以“腳掌長(zhǎng)”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線(xiàn)附近,試求“身高”與“腳掌長(zhǎng)”之間的線(xiàn)性回歸方程;
(2)若某人的腳掌長(zhǎng)為26.5cm,試估計(jì)此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人進(jìn)行進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,, O為DE的中點(diǎn),.F為的中點(diǎn),平面平面BCED.
(1)求證:平面 平面.
(2)線(xiàn)段OC上是否存在點(diǎn)G,使得平面EFG?說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,為的中點(diǎn),平面為的中點(diǎn),,,
(1)證明:平面;
(2)如果二面角的正切值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,拋物線(xiàn)的準(zhǔn)線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)分別是橢圓的左頂點(diǎn)、左焦點(diǎn)直線(xiàn)與橢圓交于不同的兩點(diǎn)(都在軸上方).且.證明:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時(shí)間情況,在本市的所有中學(xué)生中隨機(jī)抽取了120名學(xué)生進(jìn)行調(diào)查,現(xiàn)將日均自學(xué)時(shí)間小于1小時(shí)的學(xué)生稱(chēng)為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下列聯(lián)表,已知在調(diào)查對(duì)象中隨機(jī)抽取1人,為“自學(xué)不足”的概率為.
非自學(xué)不足 | 自學(xué)不足 | 合計(jì) | |
配有智能手機(jī) | 30 | ||
沒(méi)有智能手機(jī) | 10 | ||
合計(jì) |
請(qǐng)完成上面的列聯(lián)表;
根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“自學(xué)不足”與“配有智能手機(jī)”有關(guān)?
附表及公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于集合,定義函數(shù)對(duì)于兩個(gè)集合,定義集合. 已知, .
(Ⅰ)寫(xiě)出和的值,并用列舉法寫(xiě)出集合;
(Ⅱ)用表示有限集合所含元素的個(gè)數(shù),求的最小值;
(Ⅲ)有多少個(gè)集合對(duì),滿(mǎn)足,且?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com