【題目】設(shè)n為正整數(shù),集合A=.對于集合A中的任意元素和,記
M()=.
(Ⅰ)當n=3時,若, ,求M()和M()的值;
(Ⅱ)當n=4時,設(shè)B是A的子集,且滿足:對于B中的任意元素,當相同時,M()是奇數(shù);當不同時,M()是偶數(shù).求集合B中元素個數(shù)的最大值;
(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數(shù)最多,并說明理由.
【答案】(1) M(α,β)=1
(2) 最大值為4
(3)答案見解析
【解析】分析:(1)根據(jù)定義對應(yīng)代入可得M()和M()的值;(2)先根據(jù)定義得M(α,α)= x1+x2+x3+x4.再根據(jù)x1,x 2,x3,x4∈{0,1},且x1+x2+x3+x4為奇數(shù),確定x1,x 2,x3,x4中1的個數(shù)為1或3.可得B元素最多為8個,再根據(jù)當不同時,M()是偶數(shù)代入驗證,這8個不能同時取得,最多四個,最后取一個四元集合滿足條件,即得B中元素個數(shù)的最大值;(3)因為M()=0,所以不能同時取1,所以取共n+1個元素,再利用A的一個拆分說明B中元素最多n+1個元素,即得結(jié)果.
詳解:解:(Ⅰ)因為α=(1,1,0),β=(0,1,1),所以
M(α,α)= [(1+1|11|)+(1+1|11|)+(0+0|00|)]=2,
M(α,β)= [(1+0–|10|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.
(Ⅱ)設(shè)α=(x1,x 2,x3,x4)∈B,則M(α,α)= x1+x2+x3+x4.
由題意知x1,x 2,x3,x4∈{0,1},且M(α,α)為奇數(shù),
所以x1,x 2,x3,x4中1的個數(shù)為1或3.
所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.
將上述集合中的元素分成如下四組:
(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).
經(jīng)驗證,對于每組中兩個元素α,β,均有M(α,β)=1.
所以每組中的兩個元素不可能同時是集合B的元素.
所以集合B中元素的個數(shù)不超過4.
又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}滿足條件,
所以集合B中元素個數(shù)的最大值為4.
(Ⅲ)設(shè)Sk=( x1,x 2,…,xn)|( x1,x 2,…,xn)∈A,xk=1,x1=x2=…=xk–1=0)(k=1,2,…,n),
Sn+1={( x1,x 2,…,xn)| x1=x2=…=xn=0},
則A=S1∪S1∪…∪Sn+1.
對于Sk(k=1,2,…,n–1)中的不同元素α,β,經(jīng)驗證,M(α,β)≥1.
所以Sk(k=1,2 ,…,n–1)中的兩個元素不可能同時是集合B的元素.
所以B中元素的個數(shù)不超過n+1.
取ek=( x1,x 2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n–1).
令B=(e1,e2,…,en–1)∪Sn∪Sn+1,則集合B的元素個數(shù)為n+1,且滿足條件.
故B是一個滿足條件且元素個數(shù)最多的集合.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設(shè)直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個小正方形的邊長為1,求該塹堵的體積;
(2)在塹堵中,如圖2,,若,當陽馬的體積最大時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,是它的上頂點,點各不相同且均在橢圓上.
(1)若恰為橢圓長軸的兩個端點,求的面積;
(2)若,求證:直線過一定點;
(3)若,的外接圓半徑為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)若,數(shù)列的前項和為,求的取值范圍;
(3)若,從數(shù)列中抽出部分項(奇數(shù)項與偶數(shù)項均不少于兩項),將抽出的項按照某一順序排列后構(gòu)成等差數(shù)列.當?shù)炔顢?shù)列的項數(shù)最大時,求所有滿足條件的等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論在上的單調(diào)性.
(2)當時,若在上的最大值為,證明:函數(shù)在內(nèi)有且僅有2個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com