觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=1,可得a0+a1+a2+…+a2013=(1-2•1)2013=-1,
令x=1,可得a0-a1+a2+…-a2013=(1+2•1)2013=32013,
請仿照這種“賦值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
 
考點:歸納推理
專題:推理和證明
分析:仿照這種“賦值法”,令x=0,可得a0=1,再令x=0,可得a0=1,從而求得出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
解答: 解:∵已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=0,可得a0=(1-0)2013=0,
再令x=0,可得a0=1,
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=0-1=-1,
故答案為:1,-1
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a>b>c>1,記M=a-
c
,N=a-
b
,P=2(
a+b
2
-
ab
),Q=3(
a+b+c
3
-
3abc
),試找出中的最小者,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij,則數(shù)字73在表中出現(xiàn)的次數(shù)為
 

 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E、F分別是AB,CD的中點,將四邊形ADFE沿直線EF進行翻折.給出四個結論:
①DF⊥BC,
②BD⊥FC
③平面DBF⊥平面BFC,
④平面DCF⊥平面BFC.
在翻折過程中,可能成立的結論是
 
.(填寫結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若P為曲線
x=secα
y=tanα
(α為參數(shù))上的動點,O為坐標原點,M為線段OP的中點,則點M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象,給出下列命題:
①3是函數(shù)y=f(x)的極大值點;
②1是函數(shù)y=f(x)的極值點;
③當x>3時,f(x)>0恒成立;
④函數(shù)y=f(x)在x=-2處切線的斜率小于零;
⑤函數(shù)y=f(x)在區(qū)間(-2,3)上單調遞減.
則正確命題的序號是
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
1
x
-1,x≥1
lnx,0<x<1
,若函數(shù)g(x)=f(x)-kx+k只有一個零點,則k的取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,1)
C、[0,1]
D、(-∞,-1]∪[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,設p:存在a∈R,使y=ax是R上的單調遞減函數(shù); q:存在a∈R,使函數(shù)g(x)=lg(2ax2+2x+1)的值域為R,如果“p∧q”為假,“p∨q”為真,則a的取值范圍是(  )
A、(
1
2
,1)
B、(
1
2
,+∞)
C、(0,
1
2
]∪[1,+∞)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1-2x)7=a0+a1x+a2x2+…+a7x7,則a1+a2+…+a7=
 

查看答案和解析>>

同步練習冊答案