【題目】十九大提出,加快水污染防治,建設(shè)美麗中國.根據(jù)環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計(jì)數(shù)據(jù),得到如下頻率分布表:

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨(dú)立.

(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經(jīng)濟(jì)影響如下:當(dāng)時(shí),沒有影響;當(dāng)時(shí),經(jīng)濟(jì)損失為10萬元;當(dāng)時(shí),經(jīng)濟(jì)損失為60萬元.為減少損失,現(xiàn)有三種應(yīng)對方案:

方案一:防治350噸的污水排放,每年需要防治費(fèi)3.8萬元;

方案二:防治310噸的污水排放,每年需要防治費(fèi)2萬元;

方案三:不采取措施.

試比較上述三種文案,哪種方案好,并請說明理由.

【答案】(1) .

(2) 采取方案二最好,理由見解析.

【解析】分析:(Ⅰ)根據(jù)給出的頻率分布表可以得到每年排放量在噸到噸的概率為,而三年中之多有一年排放量滿足題設(shè)要求的概率可由二項(xiàng)分布來計(jì)算.

(Ⅱ)考慮不同方案導(dǎo)致的經(jīng)濟(jì)損失.方案一的經(jīng)濟(jì)損失為萬元;方案二中,排列量在噸到噸的概率為,相應(yīng)的經(jīng)濟(jì)損失為萬,排放量不在此范圍內(nèi)的概率為,相應(yīng)的經(jīng)濟(jì)損失為防治費(fèi)萬,故經(jīng)濟(jì)損失的數(shù)學(xué)期望為,同理可以計(jì)算出方案三的經(jīng)濟(jì)損失的數(shù)學(xué)期望為萬,故方案二較好.

詳解:(Ⅰ)由題得,

設(shè)在未來3年里,河流的污水排放量的年數(shù)為,則.

設(shè)事件“在未來3年里,至多有一年污水排放量”為事件,則 .

∴在未來3年里,至多1年污水排放量的概率為.

(Ⅱ) 方案二好,理由如下:由題得,.

分別表示方案一、方案二、方案三的經(jīng)濟(jì)損失.則萬元.

的分布列為:

.

的分布列為:

.

∴三種方案中方案二的平均損失最小,所以采取方案二最好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c均為正數(shù).
(Ⅰ)求證:a2+b2+( 2≥4 ;
(Ⅱ)若a+4b+9c=1,求證: ≥100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{}的前n項(xiàng)和為,且滿足2+m(m∈R).

(Ⅰ)求數(shù)列{}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{}滿足,求數(shù)列{}的前n項(xiàng)和

【答案】(Ⅰ)(Ⅱ)

【解析】

()法一:由前n項(xiàng)和與數(shù)列通項(xiàng)公式的關(guān)系可得數(shù)列的通項(xiàng)公式為;

法二:由題意可得,則據(jù)此可得數(shù)列的通項(xiàng)公式為.

Ⅱ)由(Ⅰ)可得,裂項(xiàng)求和可得.

()法一:

,

當(dāng)時(shí),,即,

,當(dāng)時(shí)符合上式,所以通項(xiàng)公式為.

法二:

從而有

所以等比數(shù)列公比,首項(xiàng),因此通項(xiàng)公式為.

Ⅱ)由(Ⅰ)可得

,

.

【點(diǎn)睛】

本題主要考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系,裂項(xiàng)求和的方法等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.

型】解答
結(jié)束】
18

【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.

(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求,

(2)若,證明: .

【答案】(1) ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以

,所以,

,則,與矛盾,故 .

(2)由(1)可知,

,可得,

,

當(dāng)時(shí), 單調(diào)遞減,且;

當(dāng)時(shí), , 單調(diào)遞增;且,

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且

,

.

【點(diǎn)睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.

I求張同學(xué)至少取到1道乙類題的概率;

II已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨(dú)立.用表示張同學(xué)答對題的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:①命題,則的逆否命題為假命題:

②命題,則的否命題是,則”;

③若為真命題,為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個(gè)數(shù)有(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案