在△ABC中,∠A,∠B,∠C的對邊分別為a、b、c,若
m
=(
3
sinA-cosA,1),
n
=(cosC,cosB),且
m
n

(1)求∠B的大小;
(2)若a+c=1,求b的取值范圍.
考點:平面向量數(shù)量積的運算,正弦定理,余弦定理
專題:解三角形
分析:(1)由已知向量平行的坐標關系得到cosC+(cosA-
3
sinA)cosB=0,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由余弦定理列出關系式,變形后將a+c及cosB的值代入表示出b2,根據(jù)a的范圍,利用二次函數(shù)的性質求出b2的范圍,即可求出b的范圍.
解答: 解:(1)∵
m
=(
3
sinA-cosA,1),
n
=(cosC,cosB),且
m
n

得cosC+(cosA-
3
sinA)cosB=0,
∴-cos(A+B)+cosAcosB-
3
sinAcosB=0,
即sinAsinB-
3
sinAcosB=0,
∵sinA≠0,∴sinB-
3
cosB=0,即tanB=
3
,
又B為三角形的內角,
則B=
π
3
;
(2)∵a+c=1,即c=1-a,cosB=
1
2

∴由余弦定理得:b2=a2+c2-2ac•cosB,即b2=a2+c2-ac=(a+c)2-3ac=1-3a(1-a)=3(a-
1
2
2+
1
4

∵0<a<1,∴
1
4
≤b2<1,
1
2
≤b<1.
點評:此題考查了余弦定理,二次函數(shù)的性質,誘導公式,以及同角三角函數(shù)間的基本關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
x-1
的定義域是(  )
A、(1,+∞)
B、R
C、(-∞,1)∪(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,D是BC邊上的一點,
AD
=λ(
AB
|
AB|
+
AC
|
AC|
).|
AB
|=2,|
AC|
=4,若記
AB
=
a
AC
=
b
,則用
a
,
b
表示
BD
所得的結果為( 。
A、
1
2
a
-
1
2
b
B、
1
3
a
-
1
3
b
C、-
1
3
a
+
1
3
b
D、
1
2
a
+
1
3
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為1的球內最大圓柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在三棱柱ABC-A1B1C1中,D是BC上一點,且A1B∥平面AC1D,D1是B1C1的中點,求證:平面A1BD1∥平面AC1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:空間不共點且兩兩相交的四條直線在同一平面內.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,若a9+3a11<0,a10•a11<0,且數(shù)列{an}的前n項和Sn有最大值,那么Sn取得最小正值時n等于(  )
A、20B、17C、19D、21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3ax+(a2-1)y+6=0與l2:x+(a-1)y=0平行,則實數(shù)a的取值為(  )
A、.1或-
1
2
B、
1
2
或1
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個公司均可獨立完成某項工程,若這項工程先由甲公司施工81天,則余下部分再由乙公司施工144天可完成,已知甲公司施工每天所需費用為6萬元,乙公司施工每天所需費用為3萬元,現(xiàn)按合同規(guī)定,甲公司完成這項工程總量的
2
3
,乙公司完成這項工程的
1
3
,那么完成這項工程所需總費用的最小值為
 
萬元.

查看答案和解析>>

同步練習冊答案