【題目】已知橢圓的離心率為,過橢圓的焦點且垂直于軸的直線被橢圓截得的弦長為

1)求橢圓的方程;

2)設點均在橢圓上,點在拋物線上,若的重心為坐標原點,且的面積為,求點的坐標.

【答案】1;(2,或

【解析】

1)運用離心率公式和垂直于軸的弦長公式,以及的關系解方程可得,進而得到所求橢圓的方程;

2)設,聯(lián)立橢圓方程,運用韋達定理和中點坐標公式、三角形的重心坐標公式,可得的坐標,代入拋物線方程,結合三角形的面積公式,計算可得的坐標.

1)根據(jù)題意得,又因為,解得,則,

所以橢圓的方程為:;

2)設,聯(lián)立橢圓方程,可得,

可得,

,

在拋物線上,可得,

,

,

可得③,將②代入③整理可得,

解得,相應的1

所以,或

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程為,左,右焦點分別為,上頂點為A,是面積為4的直角三角形.

1)求橢圓的標準方程;

2)過作直線與橢圓交于P,Q兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果方程y|y|1所對應的曲線與函數(shù)yfx)的圖象完全重合,那么對于函數(shù)yfx)有如下結論:

①函數(shù)fx)在R上單調遞減;

yfx)的圖象上的點到坐標原點距離的最小值為1;

③函數(shù)fx)的值域為(﹣∞,2]

④函數(shù)Fx)=fx+x有且只有一個零點.

其中正確結論的序號是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,為邊的中點,將繞直線翻轉成平面),為線段的中點,則在翻折過程中,①與平面垂直的直線必與直線垂直;②線段的長恒為③異面直線所成角的正切值為④當三棱錐的體積最大時,三棱錐外接球的體積是.上面說法正確的所有序號是(

A.①②④B.①③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,過點P(1,2)的直線l的參數(shù)方程為為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(1)求直線l的普通方程和曲線C的直角坐標方程;

(2)若直線l與曲線C相交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省的一個氣象站觀測點在連續(xù)4天里記錄的AQI指數(shù)M與當天的空氣水平可見度y(單位:cm)的情況如下表:

M

900

700

300

100

y

0.5

3.5

6.5

9.5

該省某市201912月份AQI指數(shù)M的頻數(shù)分布表如下:

M

頻數(shù)

3

6

12

6

3

(1)設,若xy之間具有線性關系,試根據(jù)上述數(shù)據(jù)求出y關于x的線性回歸方程;

(2)王先生在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)的相關關系如下表:

M

日均收入(元)

-2000

-1000

2000

6000

8000

估計王先生的洗車店201912月份每天的平均收入.

附參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當時, 點在軸上的射影為。連結并延長分別交、兩點,連接 的面積分別記為, ,設.

)求橢圓和拋物線的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,平面平面ABC.

1)求證:平面平面

2)若,,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,,,底面,,的中點.

1)求證:;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案