【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當時, 點在軸上的射影為。連結(jié)并延長分別交、兩點,連接; 的面積分別記為, ,設.

)求橢圓和拋物線的方程;

)求的取值范圍.

【答案】(1) ,;(2) .

【解析】試題分析: )由題意得得,根據(jù)點M在拋物線上得,又由,得 ,可得,解得,從而得,可得曲線方程。 )設, ,分析可得,先設出直線的方程為 ,,解得,從而可求得,同理可得,故可將化為m的代數(shù)式,用基本不等式求解可得結(jié)果。

試題解析

)由拋物線定義可得,

∵點M在拋物線上,

,即

又由,得

將上式代入,得

解得

,

所以曲線的方程為,曲線的方程為。

)設直線的方程為,

消去y整理得,

, .

,

, ,

,

所以,

設直線的方程為 ,

,解得,

所以

可知,用代替,

可得,

,解得,

所以

代替,可得

所以

,當且僅當時等號成立。

所以的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形為等腰梯形,為正方形,平面平面,.

(1)求證:平面平面;

(2)為線段上一動點,求與平面所成角正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐OABCD的底面是邊長為1的菱形,OA2,∠ABC60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.

1)求證:直線MN∥平面OCD;

2)求點M到平面OCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓的焦點且垂直于軸的直線被橢圓截得的弦長為

1)求橢圓的方程;

2)設點均在橢圓上,點在拋物線上,若的重心為坐標原點,且的面積為,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線l的極坐標方程為ρcosθ=4,曲線C的極坐標方程為ρ=2cosθ+2sinθ,以極點為坐標原點O,極軸為x軸的正半軸建立直角坐標系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.

Ⅰ)寫出直線l的直角坐標方程以及曲線C的參數(shù)方程;

Ⅱ)若射線l與直線l交于點N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司人數(shù)眾多為鼓勵員工利用網(wǎng)絡進行營銷,準備為員工辦理手機流量套餐.為了解員工手機流量使用情況,按照男員工和女員工的比例分層抽樣,得到名員工的月使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如圖所示.

1)求的值,并估計這名員工月使用流量的平均值(同一組中的數(shù)據(jù)用中點值代表

2)若將月使用流量在以上(含)的員工稱為“手機營銷達人”,填寫下面的列聯(lián)表,能否有超過的把握認為“成為手機營銷達人與員工的性別有關(guān)”;

男員工

女員工

合計

手機營銷達人

5

非手機營銷達人

合計

200/span>

參考公式及數(shù)據(jù):,其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

3)若這名員工中有名男員工每月使用流量在,從每月使用流量在的員工中隨機抽取名進行問卷調(diào)查,記女員工的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《高中數(shù)學課程標準》(2017版)規(guī)定了數(shù)學直觀想象學科的六大核心素養(yǎng),為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)(

A.甲的直觀想象素養(yǎng)高于乙

B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)

C.乙的數(shù)學建模素養(yǎng)與數(shù)學運算素養(yǎng)一樣

D.乙的六大素養(yǎng)整體水平低于甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標準,BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標準,當BMI28時為肥胖.某地區(qū)隨機調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

1)求被調(diào)查者中肥胖人群的BMI平均值;

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關(guān).

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計

高血壓

非高血壓

合計

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結(jié)論:

;平面;

三棱錐的體積為定值;異面直線所成的角為定值,

其中正確結(jié)論的序號是______

查看答案和解析>>

同步練習冊答案