5.已知數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,若an+1=$\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶數(shù)\\ 3{a_n}+1,{a_n}是奇數(shù)\end{array}$且a1=5,則S2015=4725.

分析 通過計(jì)算出前幾項(xiàng)的值可知數(shù)列{an}從第四項(xiàng)起構(gòu)成周期為3的周期數(shù)列,進(jìn)而計(jì)算可得結(jié)論.

解答 解:依題意,a1=5,
a2=3×5+1=16,
a3=$\frac{16}{2}$=8,
a4=$\frac{8}{2}$=4,
a5=$\frac{4}{2}$=2,
a6=$\frac{2}{2}$=1,
a7=3×1+1=4,
∴數(shù)列{an}從第四項(xiàng)起構(gòu)成周期為3的周期數(shù)列,
∵2015=3+3×670+2,
∴S2015=5+16+8+(4+2+1)×670+4+2=4725,
故答案為:4725.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,找出周期是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(Ⅰ)求函數(shù)$y=\sqrt{x+2}+\frac{1}{x+1}$的定義域.
(Ⅱ)求值:27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.經(jīng)過點(diǎn)(14,10),且平行于直線4x-2y+7=0的直線方程是(  )
A.x-2y+6=0B.4x-2y+9=0C.x+2y-34=0D.2x-y-18=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2-2x-3>0},B={x|ax2+bx+c≤0,a,b,c∈R,ac≠0},若A∩B=(3,4],A∪B=R,則$\frac{b^2}{a}+\frac{a}{c^2}$的最小值是( 。
A.3B.$\frac{3}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=sin(2x+φ)(0<φ<π)的圖象向右平移$\frac{π}{8}$后關(guān)于y軸對(duì)稱,則滿足此條件的φ值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.中東呼吸綜合征(簡稱MERS)是由一種新型冠狀病毒(MERS-CoV)引起的病毒性呼吸道疾。刂2015年6月1日,韓國中東呼吸綜合征感染者有43人,6月2日,韓國中東呼吸綜合征感染者新增2人,3日起每天的新感染者平均比前一天的新感染者增加1人.由于醫(yī)療部門采取措施,MERS病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少1人,到6月20日止,MERS的患者共有180人,問6月幾日感染MERS的新患者人數(shù)最多?并求這一天的新患者人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x>2,求$y=x+\frac{3}{x-2}$的最小值;
(2)已知$0<x<\frac{1}{2}$,求y=3x(1-2x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{x}{3x+1}$,數(shù)列{an}滿足${a_1}=1,{a_{n+1}}=f({a_n})(n∈{N^*})$.
(1)求證:數(shù)列{$\frac{1}{a_n}$}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記Sn=a1a2+a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列各式的值.
(1)log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$.
(2)$2×{(\root{3}{2}×\sqrt{3})^6}+{({\sqrt{2\sqrt{2}}})^{\frac{4}{3}}}-4×{({\frac{16}{49}})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}+{(-2012)^0}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案