【題目】下列命題是真命題的是(

A.有兩個(gè)面相互平行,其余各面都是平行四邊形的多面體是棱柱

B.正四面體是四棱錐

C.有一個(gè)面是多邊形,其余各面都是三角形的多面體叫做棱錐

D.正四棱柱是平行六面體

【答案】D

【解析】

依次判斷每個(gè)選項(xiàng):缺少條件,除去底面,其余各面相鄰兩面的公共邊都互相平行;正四面體是三棱錐,故錯(cuò)誤;缺少條件,這些三角形有一個(gè)公共頂點(diǎn);正確,得到答案.

A. 有兩個(gè)面相互平行,其余各面都是平行四邊形的多面體是棱柱

缺少條件:除去底面,其余各面相鄰兩面的公共邊都互相平行,故錯(cuò)誤;

B. 正四面體是四棱錐

正四面體是三棱錐,故錯(cuò)誤;

C. 有一個(gè)面是多邊形,其余各面都是三角形的多面體叫做棱錐

缺少條件:這些三角形有一個(gè)公共頂點(diǎn),故錯(cuò)誤;

D. 正四棱柱是平行六面體

根據(jù)平行六面體的定義知正確;

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),且直線經(jīng)過(guò)線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某知名電商在雙十一購(gòu)物狂歡節(jié)中成交額再創(chuàng)新高,日單日成交額達(dá)億元.某店主在此次購(gòu)物狂歡節(jié)期間開(kāi)展了促銷活動(dòng),為了解買(mǎi)家對(duì)此次促銷活動(dòng)的滿意情況,隨機(jī)抽取了參與活動(dòng)的位買(mǎi)家,調(diào)查了他們的年齡層次和購(gòu)物滿意情況,得到年齡層次的頻率分布直方圖和購(gòu)物評(píng)價(jià)為滿意的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:

“購(gòu)物評(píng)價(jià)為滿意”的年齡層次頻數(shù)分布表:

年齡(歲)

頻數(shù)

1)估計(jì)參與此次活動(dòng)的買(mǎi)家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);

2)若年齡在歲以下的稱為青年買(mǎi)家,年齡在歲以上(含歲)的稱為中年買(mǎi)家,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為中、青年買(mǎi)家對(duì)此次活動(dòng)的評(píng)價(jià)有差異?

評(píng)價(jià)滿意

評(píng)價(jià)不滿意

合計(jì)

中年買(mǎi)家

青年買(mǎi)家

合計(jì)

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時(shí),的最小值;

(2)討論函數(shù)的奇偶性,并說(shuō)明理由;

(3)當(dāng)時(shí),是否存在實(shí)數(shù),使得不等式對(duì)任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路,海岸邊界近似地看成一條曲線段.為開(kāi)發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道,且直線與曲線有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段是函數(shù)圖像的一段,點(diǎn)M、的距離分別為8千米和1千米,點(diǎn)N的距離為10千米,點(diǎn)P的距離為2千米.、分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.

(1)求曲線段的函數(shù)關(guān)系式,并指出其定義域;

2)求直線的方程,并求出公路的長(zhǎng)度(結(jié)果精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)的圖像過(guò)原點(diǎn),且的導(dǎo)數(shù),當(dāng)時(shí),函數(shù)過(guò)點(diǎn)的切線至少有2條,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某組委會(huì)要從五名志愿者中選派四人分別從事翻譯導(dǎo)游禮儀司機(jī)四項(xiàng)不同工作,若其中甲不能從事翻譯工作,乙不能從事導(dǎo)游工作,其余三人均能從事這四項(xiàng)工作,則不同的選派方案共有________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,、是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Eab0)的離心率e.

1)若點(diǎn)P1)在橢圓E上,求橢圓E的標(biāo)準(zhǔn)方程;

2)若D20)在橢圓內(nèi)部,過(guò)點(diǎn)D斜率為的直線交橢圓EM.N兩點(diǎn),|MD|2|ND|,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案