【題目】下列命題是真命題的是( )
A.有兩個面相互平行,其余各面都是平行四邊形的多面體是棱柱
B.正四面體是四棱錐
C.有一個面是多邊形,其余各面都是三角形的多面體叫做棱錐
D.正四棱柱是平行六面體
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),且直線經(jīng)過線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某知名電商在雙十一購物狂歡節(jié)中成交額再創(chuàng)新高,月日單日成交額達(dá)億元.某店主在此次購物狂歡節(jié)期間開展了促銷活動,為了解買家對此次促銷活動的滿意情況,隨機(jī)抽取了參與活動的位買家,調(diào)查了他們的年齡層次和購物滿意情況,得到年齡層次的頻率分布直方圖和“購物評價為滿意”的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:
“購物評價為滿意”的年齡層次頻數(shù)分布表:
年齡(歲) | |||||
頻數(shù) |
(1)估計參與此次活動的買家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);
(2)若年齡在歲以下的稱為“青年買家”,年齡在歲以上(含歲)的稱為“中年買家”,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為中、青年買家對此次活動的評價有差異?
評價滿意 | 評價不滿意 | 合計 | |
中年買家 | |||
青年買家 | |||
合計 |
附:參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng)時,的最小值;
(2)討論函數(shù)的奇偶性,并說明理由;
(3)當(dāng)時,是否存在實(shí)數(shù),使得不等式對任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路、,海岸邊界近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道,且直線與曲線有且僅有一個公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段是函數(shù)圖像的一段,點(diǎn)M到、的距離分別為8千米和1千米,點(diǎn)N到的距離為10千米,點(diǎn)P到的距離為2千米.以、分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.
(1)求曲線段的函數(shù)關(guān)系式,并指出其定義域;
(2)求直線的方程,并求出公路的長度(結(jié)果精確到1米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)的圖像過原點(diǎn),且的導(dǎo)數(shù),當(dāng)時,函數(shù)過點(diǎn)的切線至少有2條,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某組委會要從五名志愿者中選派四人分別從事翻譯導(dǎo)游禮儀司機(jī)四項(xiàng)不同工作,若其中甲不能從事翻譯工作,乙不能從事導(dǎo)游工作,其余三人均能從事這四項(xiàng)工作,則不同的選派方案共有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,真命題是( )
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:(a>b>0)的離心率e.
(1)若點(diǎn)P(1,)在橢圓E上,求橢圓E的標(biāo)準(zhǔn)方程;
(2)若D(2,0)在橢圓內(nèi)部,過點(diǎn)D斜率為的直線交橢圓E于M.N兩點(diǎn),|MD|=2|ND|,求橢圓E的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com