如圖,在四面體OABC中,AC=BC,|
OA
|=3,|
OB
|=1,則
AB
OC
=
 

考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:如圖所示,取AB的中點D,連接CD,OD.由AC=BC,可得
CD
AB
=0.利用向量的三角形法則、平行四邊形法則可得
OA
+
OB
=2
OD
,
AB
=
OB
-
OA
,再利用數(shù)量積運算即可得出.
解答: 解:如圖所示,取AB的中點D,連接CD,OD.
∵AC=BC,∴CD⊥AB.
CD
AB
=0.
OA
+
OB
=2
OD
AB
=
OB
-
OA
,OA=3,OB=1.
AB
OC
=
AB
•(
OD
+
DC
)
=
AB
OD

=
1
2
(
OA
+
OB
)
•(
OB
-
OA
)

=
1
2
(
OA
2
-
OB
2
)

=4.
故答案為:4.
點評:本題考查了向量的三角形法則、平行四邊形法則、數(shù)量積運算,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若x為一個三角形內(nèi)角,則y=sinx+cosx的值域為( 。
A、(-1,1)
B、(1,
2
]
C、(-1,
2
]
D、(0,
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“幸福感指數(shù)”是指某個人主觀的評價他對自己目前生活狀態(tài)的滿意程度時給出的區(qū)間[0,10]內(nèi)的一個數(shù),該數(shù)越接近10表示越滿意.為了解某大城市市民的幸福感,隨時對該城市的男、女市民各500人進行了調(diào)查.調(diào)查數(shù)據(jù)如下表所示.
幸福感指數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)
男市民人數(shù)1020220125125
女市民人數(shù)1010180175125
如果市民幸福感指數(shù)達到6,則認為該市民幸福.根據(jù)表格,解答下面的問題:
(I)完成下列2×2列聯(lián)表
(II)試在犯錯誤概率不超過0.01的前提下能否判定該市市民幸福與否與性別有關(guān)?
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2≥k00.100.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,曲線C的參數(shù)方程為
x=sinθ+cosθ
y=sin2θ
(θ為參數(shù)),若以直角坐標系xOy的O點為極點,x軸正方向為極軸,且長度單位相同,建立極坐標系,得直線l的極坐標方程為2ρcos(θ+
π
6
)=1.求直線l與曲線C交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:|
a
|=5,|
b
|=4,且
a
b
的夾角為60°,問當且僅當k為何值時,向量k
a
-
b
a
+2
b
垂直?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+a2在x=1時有極值10,
(1)求實數(shù)a,b的值;
(2)若方程f(x)=m在區(qū)間[-1,2]內(nèi)有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=3sin(2x+
π
6
)+1的周期、單調(diào)區(qū)間及最大、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1-x)+f(1+x)=0恒成立.如果實數(shù)m、n滿足不等式組
m>3
f(m2-6m+23)+f(n2-8n)<0
,那么m2+n2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=1-2sin2(x-
π
6
)的最小正周期是
 

查看答案和解析>>

同步練習冊答案