【題目】已知動點M(x,y)到直線l:x=3的距離是它到點D(1,0)的距離的 倍.
(1)求動點M的軌跡C的方程;
(2)設軌跡C上一動點T滿足: =2λ +3μ ,其中P、Q是軌跡C上的點,且直線OP與OQ的斜率之積為﹣ .若N(λ,μ)為一動點,F(xiàn)1(﹣ ,0)、F2 ,0)為兩定點,求|NF1|+|NF2|的值.

【答案】
(1)解:設M(x,y),則M到直線l的距離為|x﹣3|,MD= ,

∴|x﹣3|= ,化簡得

∴動點M的軌跡C的方程為


(2)解:設P( cosα, sinα),Q( cosβ, sinβ),

則kOP= ,kOQ= ,∴kOPkOQ= =﹣ ,

∴sinαsinβ+cosαcosβ=0,

=2λ +3μ ,∴T(2 λcosα+3 μcosβ,2 λsinα+3 μsinβ),

∵T在曲線C 上,

∴2(2 λcosα+3 μcosβ)2+3(2 λsinα+3 μsinβ)2=6,

化簡得4λ2+9μ2=1,即 ,

∴N(λ,μ)點軌跡方程為 ,

F1(﹣ ,0)、F2 ,0)為此橢圓的兩個焦點,

∴|NF1|+|NF2=2 =1.


【解析】(1)設M(x,y),用x,y表示出距離,列方程化簡即可;(2)設P( cosα, sinα),Q( cosβ, sinβ),表示出T點坐標,代入曲線C的方程化簡可得N的軌跡方程,利用橢圓的性質(zhì)得出定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S﹣ABC的外接球的表面積為(
A.32π
B.
C.
D. π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是異面直線,則以下四個命題:存在分別經(jīng)過直線的兩個互相垂直的平面;存在分別經(jīng)過直線的兩個平行平面;經(jīng)過直線有且只有一個平面垂直于直線;經(jīng)過直線有且只有一個平面平行于直線其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且其圖象的一個對稱軸為,將函數(shù)圖象上所有點的橫坐標縮小到原來的倍,再將圖象向左平移個單位長度,得到函數(shù)的圖象.

1)求的解析式,并寫出其單調(diào)遞增區(qū)間;

2)求函數(shù)在區(qū)間上的零點;

3)對于任意的實數(shù),記函數(shù)在區(qū)間上的最大值為,最小值為,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選派一名學生參加全市實踐活動技能竟賽,A、B兩位同學在學校的學習基地現(xiàn)場進行加工直徑為20mm的零件測試,他倆各加工的10個零件直徑的相關(guān)數(shù)據(jù)如圖所示(單位:mm

AB兩位同學各加工的10個零件直徑的平均數(shù)與方差列于下表;

平均數(shù)

方差

A

20

0.016

B

20

s2B

根據(jù)測試得到的有關(guān)數(shù)據(jù),試解答下列問題:

(Ⅰ)計算s2B,考慮平均數(shù)與方差,說明誰的成績好些;

(Ⅱ)考慮圖中折線走勢情況,你認為派誰去參賽較合適?請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ex﹣ex﹣x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若對所有x≥0,都有g(shù)(x)≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,anan+1=2Sn , 設bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對邊的邊長分別是,已知,.()若的面積等于,求)若,求的面積.

查看答案和解析>>

同步練習冊答案