已知集合A={x|x2<4},B={0,1,2},則A∩B=( 。
A、∅B、{0}
C、{0,1}D、{0,1,2}
考點:交集及其運算
專題:集合
分析:先求出A={x|-2<x<2},從而求出A∩B.
解答: 解:∵A={x|-2<x<2},B={0,1,2},
∴A∩B={0,1}.
故選:C.
點評:本題考查了集合的運算,不等式的解法,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,…,xn(單位:噸).根據(jù)如圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的結(jié)果s為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)的最小正周期為π,則該函數(shù)圖象( 。
A、關(guān)于直線x=
π
4
對稱
B、關(guān)于直線x=
π
3
對稱
C、關(guān)于點(
π
4
,0)對稱
D、關(guān)于點(
π
3
,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某外商計劃在5個候選城市投資3個不同的項目,且在同一個城市投資的項目不超過2個,則該外商不同的投資方案有( 。
A、60種B、70種
C、80種D、120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-6y+9=0關(guān)于直線2x+y+5=0對稱的圓的方程是( 。
A、(x+7)2+(y+1)2=1
B、(x+7)2+(y+2)2=1
C、(x+6)2+(y+2)2=1
D、(x+6)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序輸出的結(jié)果S為( 。
A、17B、19C、21D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把5個白色棋子和3個黑色棋子放在8×8的棋盤上使得沒有2個棋子在同一行和同一列,問共有多少種不同的擺放方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:f(x)=-f(x+
3
2
),f(-1)=1,則f(1)+f(2)+f(3)+…+f(2008)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(2cos2x+sin2x)+b(a>0)
(1)求f(x)的最小正周期T;
(2)若x∈[0,
π
4
]時,f(x)的值域是[1,
2
],求實數(shù)a、b的值.

查看答案和解析>>

同步練習(xí)冊答案