函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)的最小正周期為π,則該函數(shù)圖象( 。
A、關(guān)于直線x=
π
4
對(duì)稱
B、關(guān)于直線x=
π
3
對(duì)稱
C、關(guān)于點(diǎn)(
π
4
,0)對(duì)稱
D、關(guān)于點(diǎn)(
π
3
,0)對(duì)稱
考點(diǎn):正弦函數(shù)的圖象,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的周期為
ω
,求得ω的值,再根據(jù)正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.
解答: 解:由于函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)的最小正周期為
ω
=π,
∴ω=2,f(x)=sin(2x+
π
3
),當(dāng)x=
π
3
時(shí),f(x)=0,故該函數(shù)圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱,
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為
ω
,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
3
|2-x|-m的圖象與x軸有交點(diǎn),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是( 。
A、
3
2
B、1
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1、CB1的中點(diǎn),DE⊥面CBB1
(1)證明:DE∥面ABC;
(2)求四棱錐C-ABB1A1與圓柱OO1的體積比;
(3)若BB1=BC,求CA1與面BB1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l與半徑為1的⊙D相切于點(diǎn)C,動(dòng)點(diǎn)P到直線l的距離為d,若d=
2
|PD|
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)若軌跡上的點(diǎn)P與同一平面上的點(diǎn)G、M分別滿足
GD
=2
DC
MP
=3
PD
,
GM
PG
+
GM
PM
=0,求以P、G、D為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)的某種產(chǎn)品經(jīng)市場(chǎng)調(diào)查得到如下信息,在不做廣告宣傳時(shí)月銷售量為1000件;若做廣告宣傳,月銷售量S件與廣告費(fèi)n千元(n∈N*)的關(guān)系可用右邊流程圖來表示:
(Ⅰ)根據(jù)流程圖,試寫出廣告費(fèi)n分別等于1千元和2千元時(shí)所對(duì)應(yīng)的月銷售量S的值;
(Ⅱ)試寫出月銷售量S與廣告費(fèi)n千元的函數(shù)關(guān)系式;
(Ⅲ)若銷售一件產(chǎn)品獲利10元,該企業(yè)做幾千元廣告時(shí),才能月獲利最多,最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在30瓶飲料中,有3瓶已過了保質(zhì)期.從這30瓶飲料中任取2瓶,則至少取到一瓶已過保質(zhì)期飲料的概率為( 。
A、
117
145
B、
28
145
C、
28
145
D、
6
145

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2<4},B={0,1,2},則A∩B=( 。
A、∅B、{0}
C、{0,1}D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x≥0
y≥0
x+y≤1
,則z=
1
2
x+y
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案