【題目】在四棱錐P-ABCD中,PA平面ABCD,菱形ABCD的邊長(zhǎng)為2,且,點(diǎn)E、F分別是PA,CD的中點(diǎn),

1)求證:EF平面PBC

2)若PC與平面ABCD所成角的大小為,求C到平面PBD的距離

【答案】1)證明見(jiàn)詳解;(2

【解析】

1)取的中點(diǎn),連接,由三角形中位線(xiàn)的性質(zhì)可證,即可證明平面平面,從而得證結(jié)論.

2)將點(diǎn)到面的距離問(wèn)題轉(zhuǎn)化為求三棱錐的高的問(wèn)題,利用等體積法即可得到答案.

1)如圖取的中點(diǎn),連接,

因?yàn)辄c(diǎn)EF分別是PA,CD的中點(diǎn),

所以分別為中位線(xiàn),

所以,

,

所以平面平面,所以平面

(2)連接交于點(diǎn),連接.

設(shè)點(diǎn)到平面的距離為

因?yàn)榱庑?/span>ABCD的邊長(zhǎng)為2,且,

所以,且為等邊三角形,

所以,,

因?yàn)?/span>平面

所以即為直線(xiàn)與平面所成的角,

所以,所以,

又四邊形為菱形,所以,

所以,所以

,

所以的面積為

所以

依題為三棱錐的高,

的面積為,

所以三棱錐的體積為

,

又因?yàn)?/span>,所以,解得

所以點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)運(yùn)動(dòng)計(jì)步已經(jīng)成為一種新時(shí)尚.某單位統(tǒng)計(jì)了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

1)求直方圖中a的值,并由頻率分布直方圖估計(jì)該單位職工一天步行數(shù)的中位數(shù);

2)若該單位有職工200人,試估計(jì)職工一天行走步數(shù)不大于13000的人數(shù);

3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠(yuǎn)足拉練活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來(lái)自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有一家大型共享汽車(chē)公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的汽車(chē),已知黃、藍(lán)兩種顏色的汽車(chē)的投放比例為.監(jiān)管部門(mén)為了了解這兩種顏色汽車(chē)的質(zhì)量,決定從投放到市場(chǎng)上的汽車(chē)中隨機(jī)抽取5輛汽車(chē)進(jìn)行試駕體驗(yàn),假設(shè)每輛汽車(chē)被抽取的時(shí)能性相同.

1)求抽取的5輛汽車(chē)中恰有2輛是藍(lán)色汽車(chē)的概率;

2)在試駕體驗(yàn)過(guò)程中,發(fā)現(xiàn)藍(lán)色汽車(chē)存在一定質(zhì)量問(wèn)題,監(jiān)管部門(mén)決定從投放的汽車(chē)中隨機(jī)地抽取一輛送技術(shù)部門(mén)作進(jìn)一步抽樣檢測(cè),并規(guī)定:若抽取的是黃色汽車(chē).則將其放回市場(chǎng),并繼續(xù)隨機(jī)地抽取下一輛汽車(chē);若抽到的是藍(lán)色汽車(chē),則抽樣結(jié)束;并規(guī)定抽樣的次數(shù)不超過(guò)次,在抽樣結(jié)束時(shí),若已取到的黃色汽車(chē)數(shù)以表示,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線(xiàn)過(guò)點(diǎn),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的離心率等于,拋物線(xiàn)的焦點(diǎn)在橢圓的頂點(diǎn)上.

1)求拋物線(xiàn)的方程;

2)若過(guò)的直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn),又過(guò)、作拋物線(xiàn)的切線(xiàn)、,當(dāng)時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是(

A.命題x23x+20,則x2”的逆否命題為x≠2,則x23x+2≠0”

B.a2”函數(shù)fx)=ax在區(qū)間(﹣,+∞)上為增函數(shù)的充分不必要條件

C.命題xR,使得x2+x+10”的否定是:xR,均有x2+x+1≥0”

D.f )=0,則yfx)的極值點(diǎn)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)為橢圓右頂點(diǎn),過(guò)橢圓的右焦點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn)(異于),直線(xiàn)分別交直線(xiàn),兩點(diǎn). 求證:兩點(diǎn)的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一個(gè)半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且 為弧上(不與重合)的動(dòng)點(diǎn).

(1)證明: 平面;

(2)若四邊形為正方形,且, ,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案