9.如圖,設(shè)拋物線y2=4x的焦點為F,不經(jīng)過焦點的直線上有三個不同的點A,B,C,其中點A,B在拋物線上,點C在x軸上,記△BCF的面積為S1,△ACF的面積為S2,則$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是( 。
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

分析 根據(jù)拋物線的定義,將三角形的面積關(guān)系轉(zhuǎn)化為$\frac{{{y}_{2}}^{2}}{{{y}_{1}}^{2}}$=$\frac{{x}_{2}}{{x}_{1}}$,進(jìn)行求解即可.

解答 解:由題意,拋物線的準(zhǔn)線方程為x=-1.
設(shè)A(x1,y1),B(x2,y2
由拋物線的定義知x2=|BF|-1,x1=|AF|-1,
則$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$=$\frac{{{y}_{2}}^{2}}{{{y}_{1}}^{2}}$=$\frac{{x}_{2}}{{x}_{1}}$=$\frac{{|{BF}|-1}}{{|{AF}|-1}}$,
故選:A.

點評 本題主要考查三角形的面積關(guān)系,利用拋物線的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,則f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-$\frac{1}{2}$cos2x,x∈R.
(1)若對于任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a成立,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)-$\frac{1}{3}$在區(qū)間[-2π,4π]內(nèi)的所有零點之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC三邊a,b,c上的高分別為$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,則cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的焦距為2,過短軸的一個端點與兩個焦點的圓的面積為$\frac{4}{3}$π,過橢圓C的右焦點作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點,線段AB的中點為P.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點P垂直于AB的直線與x軸交于點D,且|DP|=$\frac{3\sqrt{2}}{7}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}$.
(1)若C=A+$\frac{π}{3}$,求角A的大。
(2)若cosB=$\frac{1}{4}$,△ABC的周長為5,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在進(jìn)行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3次,設(shè)x、y、z分別表示甲、乙、丙3個盒子中的球數(shù)..
(1)求擲完3次后,x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機變量ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,空間四邊形OABC中,E,F(xiàn)分別為OA,BC的中點,設(shè)$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,試用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點,光線從點P出發(fā),經(jīng)BC,CA發(fā)射后又回到原點P(如圖11).若光線QR經(jīng)過△ABC的重心,則BP等于( 。
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案