分析 (1)根據(jù)題意,在三角形中由勾股定理列出等式,根據(jù)已知的焦距大小,即可求得橢圓方程;
(2)先設(shè)直線方程y=k(x-1),聯(lián)立橢圓方程求得P點坐標(biāo),根據(jù)已知條件求出直線PD的方程,從而求得D點坐標(biāo),又|DP|=$\frac{3\sqrt{2}}{7}$,根據(jù)兩點間的距離公式,即可求得k的值.
解答 解:(1)過短軸的一個端點與兩個焦點的圓的半徑為$\frac{2\sqrt{3}}{3}$,設(shè)右焦點的坐標(biāo)為(c,0),
依題意知,2c=2,即c=1,$\left\{\begin{array}{l}{{a}^{2}=^{2}+1}\\{(b-\frac{2\sqrt{3}}{3})^{2}+1=\frac{4}{3}}\end{array}\right.$,又b>1,
解得:a=2,b=$\sqrt{3}$,
∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設(shè)過橢圓C的右焦點的直線l的方程為y=k(x-1),(k≠0),
設(shè)A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4k2+3)x2-8k2x+4k2-12=0,
由韋達(dá)定理得x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
y1+y2=k(x1+x2)-2k=-$\frac{6k}{3+4{k}^{2}}$,
∵P為線段AB的中點,則可得點P($\frac{4{k}^{2}}{3+4{k}^{2}}$,-$\frac{3k}{3+4{k}^{2}}$),
又直線PD的斜率為-$\frac{1}{k}$,直線PD的方程為y+$\frac{3k}{3+4{k}^{2}}$=-$\frac{1}{k}$(x-$\frac{4{k}^{2}}{3+4{k}^{2}}$),
令y=0得,x=$\frac{{k}^{2}}{3+4{k}^{2}}$,
又∵點D($\frac{{k}^{2}}{3+4{k}^{2}}$,0),
∴丨PD丨=$\sqrt{(\frac{{k}^{2}}{3+4{k}^{2}}-\frac{4{k}^{2}}{3+4{k}^{2}})^{2}+(-\frac{3k}{3+4{k}^{2}})^{2}}$=$\frac{3\sqrt{{k}^{4}+{k}^{2}}}{3+4{k}^{2}}$=$\frac{3\sqrt{2}}{7}$,
化簡得17k4+k2-18=0,解得:k2=1,故k=1或k=-1,
k的值±1.
點評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,韋達(dá)定理,中點坐標(biāo)公式及兩點之間的距離公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{|{BF}|-1}}{{|{AF}|-1}}$ | B. | $\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$ | C. | $\frac{{|{BF}|+1}}{{|{AF}|+1}}$ | D. | $\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{{\sqrt{3}π}}{24}$ | D. | $1-\frac{{\sqrt{3}π}}{24}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com