圓x2+y2+4x-4y+4=0關于直線x-y+2=0對稱的圓的方程是( )
A.x2+y2=4
B.x2+y2-4x+4y=0
C.x2+y2=2
D.x2+y2-4x+4y-4=0
【答案】分析:先求出圓的標準方程,求出與圓心M和半徑,求出點M關于直線x-y+2=0對稱的點N的坐標,即可求出對稱的圓的方程.
解答:解:圓x2+y2+4x-4y+4=0 即(x+2)2+(y-2)2=4,表示以M(-2,2)為圓心,半徑等于2的圓.
設M(-2,2)關于直線x-y+2=0對稱的點N(a,b),由 求得 ,
故點N(0,0).
故所求的圓的方程是 x2+y2=4,
故選A.
點評:本題主要考查求圓的標準方程的方法.求一個點關于某直線的對稱點的坐標的方法,利用了垂直、和中點在對稱軸上這兩個條件,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓x2+y2-4x+4y+6=0截直線x-y-5=0所得的弦長等于( 。
A、
6
B、
5
2
2
C、1
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過已知圓x2+y2-4x+2y=0,x2+y2-2y-4=0的交點,且圓心在直線2x+4y=1上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)
的漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)圓x2+y2-4x-4y-10=0上的點到直線x+y-14=0的最大距離與最小距離之差是
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)已知拋物線C:y=
1
4
x2-
3
2
xcosθ+
9
4
cos2θ+2sinθ
(θ∈R)
(I)當θ變化時,求拋物線C的頂點的軌跡E的方程;
(II)已知直線l過圓x2+y2+4x-2y=0的圓心M,交(I)中軌跡E于A、B兩點,若
AB
=2
AM
,求直線l的方程.

查看答案和解析>>

同步練習冊答案