(2012•北京模擬)圓x2+y2-4x-4y-10=0上的點(diǎn)到直線x+y-14=0的最大距離與最小距離之差是
6
2
6
2
分析:把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和圓的半徑,過圓心M作已知直線的垂線,與圓分別交于A和B點(diǎn),垂足為C,由圖形可知|AC|為圓上點(diǎn)到已知直線的最大距離,|BC|為圓上點(diǎn)到已知直線的最小距離,而|AC|-|BC|等于圓的直徑,由圓的半徑即可求出直徑,即為最大距離與最小距離之差.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x-2)2+(y-2)2=18,
∴圓心M坐標(biāo)為(2,2),半徑|AM|=|BM|=3
2
,
過M作出直線x+y-14=0的垂線,與圓M交于A、B兩點(diǎn),垂足為C,
如圖所示:

由圖形可得|AC|為圓上點(diǎn)到直線x+y-14=0的最大距離,|BC|為圓上點(diǎn)到直線x+y-14=0的最小距離,
則最大距離與最小距離之差為|AC|-|BC|=|AB|=2|AM|=6
2

故答案為:6
2
點(diǎn)評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,利用了數(shù)形結(jié)合的思想,其中找出|AC|為圓上點(diǎn)到直線x+y-14=0的最大距離,|BC|為圓上點(diǎn)到直線x+y-14=0的最小距離是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知a、b、c、d是公比為2的等比數(shù)列,則
2a+b
2c+d
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)函數(shù)y=
log
2
3
(3x-2)
的定義域?yàn)?!--BA-->
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)如圖,在四棱錐P-ABCD中,PA⊥平面AC,且四邊形ABCD是矩形,則該四棱錐的四個(gè)側(cè)面中是直角三角形的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)在數(shù)列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.?dāng)?shù)列{bn}滿足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)甲、乙、丙、丁四個(gè)人進(jìn)行傳球練習(xí),每次球從一個(gè)人的手中傳入其余三個(gè)人中的任意一個(gè)人的手中.如果由甲開始作第1次傳球,經(jīng)過n次傳球后,球仍在甲手中的所有不同的傳球種數(shù)共有an種.
(如,第一次傳球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)寫出 an+1與 an的關(guān)系式(不必證明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步練習(xí)冊答案