16.已知函數(shù)f(x)=alnx+ex(a>0),若f(3x)<f(x2+a),求實數(shù)x的取值范圍.

分析 判斷函數(shù)的單調(diào)性,列出不等式組求解即可.

解答 解:函數(shù)f(x)=alnx+ex(a>0),函數(shù)是增函數(shù),
f(3x)<f(x2+a),
可得:$\left\{\begin{array}{l}0<3x\\ 3x<{x}^{2}+a\end{array}\right.$,
可得a>3x-x2,x>0,a>0恒成立,
可得0>3x-x2,解得x∈(0,3).
實數(shù)x的取值范圍:(0,3).

點評 本題考查函數(shù)的單調(diào)性的應用,函數(shù)恒成立,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖所示,P是角α得終邊與單位圓的交點,PM⊥x軸于M,AT和A′T′均是單位圓的切線,則角α的( 。
A.正弦值是PM,正切線是A′T′B.正弦值是MP,正切線是A′T′
C.正弦值是MP,正切線是ATD.正弦值是PM,正切線是AT

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.不等式$\frac{1}{1+lgx}$+$\frac{1}{1-lgx}$>2的解集為(  )
A.($\frac{1}{10}$,1)∪(1,10)B.($\frac{1}{10}$,1)∪(2,10)C.($\frac{1}{10}$,10)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知10a=3,b=lg5,求103a-2b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知角α的終邊經(jīng)過點P(-1,3),則2sinα+cosα=( 。
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{10}$C.$-\frac{7\sqrt{10}}{10}$D.$-\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求函數(shù)y=-2cos(2x+$\frac{π}{3}$)+1的最大值與最小值,并分別求出取得最大值和最小值時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+5,x≤1}\\{1+\frac{1}{x},x>1}\end{array}\right.$在定義域R上不是單調(diào)函數(shù),則a的取值范圍是a>4或a<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一個物體的運動方程為s=1-t+t2,其中s的單位是m,t的單位是s,那么物體在最初3s內(nèi)的平均速度是( 。
A.7m/sB.6m/sC.2m/sD.1m/s

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,Q為AD的中點,點M在線段PC上且PM=tPC(t>0),試確定實數(shù)t的值,使得PA∥平面MQB.

查看答案和解析>>

同步練習冊答案