【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,若直線和 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);
(2)求直線的極坐標(biāo)方程及的面積.
【答案】(1),.(2)
【解析】
(1)消參,即可得到曲線C的普通方程,結(jié)合,,得到曲線C的極坐標(biāo)方程,計(jì)算A,B坐標(biāo),即可。(2)結(jié)合,,即可得到直線AB的極坐標(biāo)方程,分別計(jì)算OA,OB的長,結(jié)合三角形面積計(jì)算公式,即可。
解:(1)曲線的參數(shù)方程為(為參數(shù)),
所以消去參數(shù)得曲線的普通方程為,
因?yàn)?/span>,,
代入曲線可得的極坐標(biāo)方程:.
將直線,代入圓的極坐標(biāo)方程可知:,,
故、兩點(diǎn)的極坐標(biāo)為,.
(2)由,得:,,根據(jù)兩點(diǎn)式可知直線的方程為:,
所以的極坐標(biāo)方程為:.
所以的極坐標(biāo)方程為.
可知直線恰好經(jīng)過圓的圓心,故為直角三角形,且,,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)選5人排成一排;
(2)排成前后兩排,前排4人,后排3人;
(3)全體排成一排,甲不站排頭也不站排尾;
(4)全體排成一排,女生必須站在一起;
(5)全體排成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求證: .
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
②根據(jù)①的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)求證:對(duì)直線與圓總有兩個(gè)不同的交點(diǎn);
(2)是否存在實(shí)數(shù),使得圓上有四個(gè)點(diǎn)到直線的距離為?若存在,求出的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,若直線和 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);
(2)求直線的極坐標(biāo)方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周脾算經(jīng)》有記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷(gui)長損益相同,晷是按照日影測(cè)定時(shí)刻的儀器,晷長即所測(cè)定的影子的長度,二十四節(jié)氣及晷長變化如圖所示,相鄰兩個(gè)節(jié)氣晷長變化量相同,周而復(fù)始,若冬至晷長最長是一丈三尺五寸,夏至晷長最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長是( )
A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,、分別是、的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求與平面所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com