【題目】,非空集合,集合.
(1)時,求;
(2)若是的必要條件,求實(shí)數(shù)的取值范圍.
【答案】(1)(UB)∩A=[,);(2)a或
【解析】
(1)先求出集合A、B,再求出UB,借助數(shù)軸求出,(UB)∩A.
(2)由題意可知AB,B={x|a<x<a2+2},借助數(shù)軸列出AB時區(qū)間端點(diǎn)間的大小關(guān)系,解不等式組求出a的范圍.
(1)對于集合A,(x)(x)<0,解得,x,所以A=(,),
當(dāng)a時,
對于集合B:(x﹣)(x﹣)<0,解得<x,所以B=(,),
所以UB=(﹣∞,]∪[,+∞),
所以(UB)∩A=[,);
(2)若是的必要條件,可知AB.
由a2+2>a,得 B={x|a<x<a2+2}.
故,解得:a或
綜上所述a的取值范圍為a或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)(常數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是函數(shù)值不恒為零的奇函數(shù),函數(shù).
(1)求實(shí)數(shù)的值,并判斷函數(shù)的單調(diào)性;
(2)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,規(guī)定排放時污染物的殘留含量不得超過1%.已知在過濾過程中的污染物的殘留數(shù)量P(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關(guān)系為:(為正常數(shù),為原污染物數(shù)量).若前5個小時廢氣中的污染物被過濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過濾( )
A. 小時B. 小時C. 5小時D. 小時
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求值;
(2)解的不等式的解集;
(3)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動點(diǎn),且平面,則與平面所成角的正切值構(gòu)成的集合是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,.
(1)證明:平面平面;
(2)若,為棱的中點(diǎn),,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“2019年”是一個重要的時間節(jié)點(diǎn)——中華人民共和國成立70周年,和全面建成小康社會的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進(jìn),70年風(fēng)雨兼程,70年滄桑巨變,勤勞勇敢的中國 人用自己的雙手創(chuàng)造了一項項輝煌的成績,取得了舉世矚目的成就.趁此良機(jī),李明在天貓網(wǎng)店銷售“新中國成立70周年紀(jì)念冊”,每本紀(jì)念冊進(jìn)價4元,物流費(fèi)、管理費(fèi)共為元/本,預(yù)計當(dāng)每本紀(jì)念冊的售價為元(時,月銷售量為千本.
(I)求月利潤(千元)與每本紀(jì)念冊的售價X的函數(shù)關(guān)系式,并注明定義域:
(II)當(dāng)為何值時,月利潤最大?并求出最大月利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且滿足若函數(shù)有六個零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com