某幾何體的三視圖(單位:cm)如圖所示,則該幾何體最長(zhǎng)的一條側(cè)棱長(zhǎng)度是( 。
A、5cm
B、
27
cm
C、
29
cm
D、
31
cm
考點(diǎn):由三視圖還原實(shí)物圖
專(zhuān)題:空間位置關(guān)系與距離
分析:三視圖知幾何體為四棱錐,且四棱錐的一條側(cè)棱與底面垂直,底面為直角梯形,畫(huà)出其直觀圖,結(jié)合圖形求出AC長(zhǎng),再解直角三角形PAC,求出PC長(zhǎng).
解答: 解:由三視圖知幾何體為四棱錐,且四棱錐的一條側(cè)棱與底面垂直,底面為直角梯形,
其直觀圖如圖:

PA=2,AB=2,CD=4,AD=3,
∴AC=
AD2+CD2
=5,
在直角三角形PAC中,PC=
PA2+AC2
=
29

故選:C
點(diǎn)評(píng):本題考查了由三視圖求距離問(wèn)題,解題的關(guān)鍵是由三視圖判斷線面與線線關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn=2•3n-2+a,等差數(shù)列{bn}的前n項(xiàng)和Tn=2n2-n+b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角φ的終邊經(jīng)過(guò)點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰的兩條對(duì)稱(chēng)軸之間的距離等于
π
3
,則f(
π
12
)的值為( 。
A、
2
10
B、-
2
10
C、
7
2
10
D、-
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)Z滿足(3,-4i)Z=|4+3i|,則Z的共軛復(fù)數(shù)的虛部為(  )
A、4
B、
4
5
C、-4
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2cos
πx
3
(x≤2000)
2x-2010(x>2000)
,則f(f(2014))=( 。
A、
3
B、-
3
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={-1,0,1,2,3},B={x||x-1|<2},則A∩∁RB=( 。
A、{0,1,2}
B、{-1,3}
C、{1,2}
D、{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|的解個(gè)數(shù)是(  )
A、9個(gè)B、2個(gè)
C、4 個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果兩個(gè)方程的曲線經(jīng)過(guò)若干次平移或?qū)ΨQ(chēng)變換后能夠完全重合,則稱(chēng)這兩個(gè)方程為“互為生成方程對(duì)”.給出下列四對(duì)方程:
①y=sinx+cosx和y=
2
sinx+1;
②y2-x2=2和x2-y2=2;
③y2=4x和x2=4y;
④y=ln(x-1)和y=ex+1.
其中是“互為生成方程對(duì)”有( 。
A、1對(duì)B、2對(duì)C、3對(duì)D、4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐A-BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.

(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A-NP-M的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案