【題目】已知函數(shù),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍。
【答案】(1)答案不唯一,具體見解析(2)
【解析】
(1)先求得函數(shù)的導(dǎo)函數(shù),利用判別式,對(duì)分成三種情況,討論函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論,結(jié)合零點(diǎn)存在性定理,判斷出當(dāng)時(shí)符合題意;利用函數(shù)的單調(diào)性和零點(diǎn)存在性定理,討論當(dāng)或時(shí)函數(shù)零點(diǎn)的情況,由此求得實(shí)數(shù)的取值范圍.
解(1),
I)時(shí),在R上遞增.
II)當(dāng)即或時(shí),令,,解得
在遞增,遞減,遞增
(2)由(1)知①當(dāng)時(shí)在R上遞增.
,存在唯一零點(diǎn).
②當(dāng)或時(shí)
I)當(dāng)時(shí),,,即,
又,,存在零點(diǎn).
又在遞增,遞減,遞增
,(*)
又,將代入(*)
,且,,解得。
II)當(dāng)時(shí),
當(dāng)時(shí),
,
又在遞減,遞增在遞減,遞增,
,,
又,
存在唯一零點(diǎn),符合題意
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當(dāng)時(shí),若時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程: (為參數(shù)),曲線的參數(shù)方程: (為參數(shù)),且直線交曲線于兩點(diǎn).
(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長(zhǎng)度;
(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性(只寫出結(jié)論即可);
(3)若對(duì)任意的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F,G,H分別為,,,的中點(diǎn),在此幾何體中,給出下面五個(gè)結(jié)論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在五面體中,四邊形是正方形, ,
(1)證明:為直角三角形;
(2)已知四邊形是等腰梯形,且,,求五面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com